|   | Mathbox for Peter Mazsa | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eqeltr | Structured version Visualization version GIF version | ||
| Description: Substitution of equal classes into element relation. (Contributed by Peter Mazsa, 22-Jul-2017.) | 
| Ref | Expression | 
|---|---|
| eqeltr | ⊢ ((𝐴 = 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleq1 2829 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
| 2 | 1 | biimpar 477 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2729 df-clel 2816 | 
| This theorem is referenced by: eqelb 38236 | 
| Copyright terms: Public domain | W3C validator |