Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqeltr | Structured version Visualization version GIF version |
Description: Substitution of equal classes into elementhood relation. (Contributed by Peter Mazsa, 22-Jul-2017.) |
Ref | Expression |
---|---|
eqeltr | ⊢ ((𝐴 = 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2826 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
2 | 1 | biimpar 478 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 df-clel 2816 |
This theorem is referenced by: eqelb 36382 |
Copyright terms: Public domain | W3C validator |