Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqeltr | Structured version Visualization version GIF version |
Description: Substitution of equal classes into elementhood relation. (Contributed by Peter Mazsa, 22-Jul-2017.) |
Ref | Expression |
---|---|
eqeltr | ⊢ ((𝐴 = 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2826 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
2 | 1 | biimpar 477 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-clel 2817 |
This theorem is referenced by: eqelb 36309 |
Copyright terms: Public domain | W3C validator |