Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqeltr Structured version   Visualization version   GIF version

Theorem eqeltr 36308
Description: Substitution of equal classes into elementhood relation. (Contributed by Peter Mazsa, 22-Jul-2017.)
Assertion
Ref Expression
eqeltr ((𝐴 = 𝐵𝐵𝐶) → 𝐴𝐶)

Proof of Theorem eqeltr
StepHypRef Expression
1 eleq1 2826 . 2 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
21biimpar 477 1 ((𝐴 = 𝐵𝐵𝐶) → 𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-cleq 2730  df-clel 2817
This theorem is referenced by:  eqelb  36309
  Copyright terms: Public domain W3C validator