![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqbrb | Structured version Visualization version GIF version |
Description: Substitution of equal classes in a binary relation. (Contributed by Peter Mazsa, 14-Jun-2024.) |
Ref | Expression |
---|---|
eqbrb | ⊢ ((𝐴 = 𝐵 ∧ 𝐴𝑅𝐶) ↔ (𝐴 = 𝐵 ∧ 𝐵𝑅𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . . . 4 ⊢ ((𝐵 = 𝐴 ∧ 𝐴𝑅𝐶) → 𝐵 = 𝐴) | |
2 | eqbrtr 37086 | . . . 4 ⊢ ((𝐵 = 𝐴 ∧ 𝐴𝑅𝐶) → 𝐵𝑅𝐶) | |
3 | 1, 2 | jca 512 | . . 3 ⊢ ((𝐵 = 𝐴 ∧ 𝐴𝑅𝐶) → (𝐵 = 𝐴 ∧ 𝐵𝑅𝐶)) |
4 | eqcom 2739 | . . . 4 ⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) | |
5 | 4 | anbi1i 624 | . . 3 ⊢ ((𝐵 = 𝐴 ∧ 𝐴𝑅𝐶) ↔ (𝐴 = 𝐵 ∧ 𝐴𝑅𝐶)) |
6 | 4 | anbi1i 624 | . . 3 ⊢ ((𝐵 = 𝐴 ∧ 𝐵𝑅𝐶) ↔ (𝐴 = 𝐵 ∧ 𝐵𝑅𝐶)) |
7 | 3, 5, 6 | 3imtr3i 290 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐴𝑅𝐶) → (𝐴 = 𝐵 ∧ 𝐵𝑅𝐶)) |
8 | simpl 483 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ 𝐵𝑅𝐶) → 𝐴 = 𝐵) | |
9 | eqbrtr 37086 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) | |
10 | 8, 9 | jca 512 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐵𝑅𝐶) → (𝐴 = 𝐵 ∧ 𝐴𝑅𝐶)) |
11 | 7, 10 | impbii 208 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐴𝑅𝐶) ↔ (𝐴 = 𝐵 ∧ 𝐵𝑅𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1541 class class class wbr 5147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 |
This theorem is referenced by: ressn2 37300 trressn 37303 |
Copyright terms: Public domain | W3C validator |