Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqbrb Structured version   Visualization version   GIF version

Theorem eqbrb 37602
Description: Substitution of equal classes in a binary relation. (Contributed by Peter Mazsa, 14-Jun-2024.)
Assertion
Ref Expression
eqbrb ((𝐴 = 𝐵𝐴𝑅𝐶) ↔ (𝐴 = 𝐵𝐵𝑅𝐶))

Proof of Theorem eqbrb
StepHypRef Expression
1 simpl 482 . . . 4 ((𝐵 = 𝐴𝐴𝑅𝐶) → 𝐵 = 𝐴)
2 eqbrtr 37601 . . . 4 ((𝐵 = 𝐴𝐴𝑅𝐶) → 𝐵𝑅𝐶)
31, 2jca 511 . . 3 ((𝐵 = 𝐴𝐴𝑅𝐶) → (𝐵 = 𝐴𝐵𝑅𝐶))
4 eqcom 2731 . . . 4 (𝐵 = 𝐴𝐴 = 𝐵)
54anbi1i 623 . . 3 ((𝐵 = 𝐴𝐴𝑅𝐶) ↔ (𝐴 = 𝐵𝐴𝑅𝐶))
64anbi1i 623 . . 3 ((𝐵 = 𝐴𝐵𝑅𝐶) ↔ (𝐴 = 𝐵𝐵𝑅𝐶))
73, 5, 63imtr3i 291 . 2 ((𝐴 = 𝐵𝐴𝑅𝐶) → (𝐴 = 𝐵𝐵𝑅𝐶))
8 simpl 482 . . 3 ((𝐴 = 𝐵𝐵𝑅𝐶) → 𝐴 = 𝐵)
9 eqbrtr 37601 . . 3 ((𝐴 = 𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)
108, 9jca 511 . 2 ((𝐴 = 𝐵𝐵𝑅𝐶) → (𝐴 = 𝐵𝐴𝑅𝐶))
117, 10impbii 208 1 ((𝐴 = 𝐵𝐴𝑅𝐶) ↔ (𝐴 = 𝐵𝐵𝑅𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1533   class class class wbr 5139
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-rab 3425  df-v 3468  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4316  df-if 4522  df-sn 4622  df-pr 4624  df-op 4628  df-br 5140
This theorem is referenced by:  ressn2  37815  trressn  37818
  Copyright terms: Public domain W3C validator