![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqbrb | Structured version Visualization version GIF version |
Description: Substitution of equal classes in a binary relation. (Contributed by Peter Mazsa, 14-Jun-2024.) |
Ref | Expression |
---|---|
eqbrb | ⊢ ((𝐴 = 𝐵 ∧ 𝐴𝑅𝐶) ↔ (𝐴 = 𝐵 ∧ 𝐵𝑅𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . 4 ⊢ ((𝐵 = 𝐴 ∧ 𝐴𝑅𝐶) → 𝐵 = 𝐴) | |
2 | eqbrtr 38212 | . . . 4 ⊢ ((𝐵 = 𝐴 ∧ 𝐴𝑅𝐶) → 𝐵𝑅𝐶) | |
3 | 1, 2 | jca 511 | . . 3 ⊢ ((𝐵 = 𝐴 ∧ 𝐴𝑅𝐶) → (𝐵 = 𝐴 ∧ 𝐵𝑅𝐶)) |
4 | eqcom 2741 | . . . 4 ⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) | |
5 | 4 | anbi1i 624 | . . 3 ⊢ ((𝐵 = 𝐴 ∧ 𝐴𝑅𝐶) ↔ (𝐴 = 𝐵 ∧ 𝐴𝑅𝐶)) |
6 | 4 | anbi1i 624 | . . 3 ⊢ ((𝐵 = 𝐴 ∧ 𝐵𝑅𝐶) ↔ (𝐴 = 𝐵 ∧ 𝐵𝑅𝐶)) |
7 | 3, 5, 6 | 3imtr3i 291 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐴𝑅𝐶) → (𝐴 = 𝐵 ∧ 𝐵𝑅𝐶)) |
8 | simpl 482 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ 𝐵𝑅𝐶) → 𝐴 = 𝐵) | |
9 | eqbrtr 38212 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ 𝐵𝑅𝐶) → 𝐴𝑅𝐶) | |
10 | 8, 9 | jca 511 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐵𝑅𝐶) → (𝐴 = 𝐵 ∧ 𝐴𝑅𝐶)) |
11 | 7, 10 | impbii 209 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐴𝑅𝐶) ↔ (𝐴 = 𝐵 ∧ 𝐵𝑅𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1536 class class class wbr 5147 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 |
This theorem is referenced by: ressn2 38423 trressn 38426 |
Copyright terms: Public domain | W3C validator |