Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqbrb Structured version   Visualization version   GIF version

Theorem eqbrb 37087
Description: Substitution of equal classes in a binary relation. (Contributed by Peter Mazsa, 14-Jun-2024.)
Assertion
Ref Expression
eqbrb ((𝐴 = 𝐵𝐴𝑅𝐶) ↔ (𝐴 = 𝐵𝐵𝑅𝐶))

Proof of Theorem eqbrb
StepHypRef Expression
1 simpl 483 . . . 4 ((𝐵 = 𝐴𝐴𝑅𝐶) → 𝐵 = 𝐴)
2 eqbrtr 37086 . . . 4 ((𝐵 = 𝐴𝐴𝑅𝐶) → 𝐵𝑅𝐶)
31, 2jca 512 . . 3 ((𝐵 = 𝐴𝐴𝑅𝐶) → (𝐵 = 𝐴𝐵𝑅𝐶))
4 eqcom 2739 . . . 4 (𝐵 = 𝐴𝐴 = 𝐵)
54anbi1i 624 . . 3 ((𝐵 = 𝐴𝐴𝑅𝐶) ↔ (𝐴 = 𝐵𝐴𝑅𝐶))
64anbi1i 624 . . 3 ((𝐵 = 𝐴𝐵𝑅𝐶) ↔ (𝐴 = 𝐵𝐵𝑅𝐶))
73, 5, 63imtr3i 290 . 2 ((𝐴 = 𝐵𝐴𝑅𝐶) → (𝐴 = 𝐵𝐵𝑅𝐶))
8 simpl 483 . . 3 ((𝐴 = 𝐵𝐵𝑅𝐶) → 𝐴 = 𝐵)
9 eqbrtr 37086 . . 3 ((𝐴 = 𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)
108, 9jca 512 . 2 ((𝐴 = 𝐵𝐵𝑅𝐶) → (𝐴 = 𝐵𝐴𝑅𝐶))
117, 10impbii 208 1 ((𝐴 = 𝐵𝐴𝑅𝐶) ↔ (𝐴 = 𝐵𝐵𝑅𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1541   class class class wbr 5147
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-br 5148
This theorem is referenced by:  ressn2  37300  trressn  37303
  Copyright terms: Public domain W3C validator