Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqelb | Structured version Visualization version GIF version |
Description: Substitution of equal classes into elementhood relation. (Contributed by Peter Mazsa, 17-Jul-2019.) |
Ref | Expression |
---|---|
eqelb | ⊢ ((𝐴 = 𝐵 ∧ 𝐴 ∈ 𝐶) ↔ (𝐴 = 𝐵 ∧ 𝐵 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 487 | . . . 4 ⊢ ((𝐵 = 𝐴 ∧ 𝐴 ∈ 𝐶) → 𝐵 = 𝐴) | |
2 | eqeltr 35934 | . . . 4 ⊢ ((𝐵 = 𝐴 ∧ 𝐴 ∈ 𝐶) → 𝐵 ∈ 𝐶) | |
3 | 1, 2 | jca 516 | . . 3 ⊢ ((𝐵 = 𝐴 ∧ 𝐴 ∈ 𝐶) → (𝐵 = 𝐴 ∧ 𝐵 ∈ 𝐶)) |
4 | eqcom 2766 | . . . 4 ⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) | |
5 | 4 | anbi1i 627 | . . 3 ⊢ ((𝐵 = 𝐴 ∧ 𝐴 ∈ 𝐶) ↔ (𝐴 = 𝐵 ∧ 𝐴 ∈ 𝐶)) |
6 | 4 | anbi1i 627 | . . 3 ⊢ ((𝐵 = 𝐴 ∧ 𝐵 ∈ 𝐶) ↔ (𝐴 = 𝐵 ∧ 𝐵 ∈ 𝐶)) |
7 | 3, 5, 6 | 3imtr3i 295 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐴 ∈ 𝐶) → (𝐴 = 𝐵 ∧ 𝐵 ∈ 𝐶)) |
8 | simpl 487 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 = 𝐵) | |
9 | eqeltr 35934 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶) | |
10 | 8, 9 | jca 516 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 ∈ 𝐶) → (𝐴 = 𝐵 ∧ 𝐴 ∈ 𝐶)) |
11 | 7, 10 | impbii 212 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐴 ∈ 𝐶) ↔ (𝐴 = 𝐵 ∧ 𝐵 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 400 = wceq 1539 ∈ wcel 2112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-ext 2730 |
This theorem depends on definitions: df-bi 210 df-an 401 df-ex 1783 df-cleq 2751 df-clel 2831 |
This theorem is referenced by: inxpxrn 36076 |
Copyright terms: Public domain | W3C validator |