![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqelb | Structured version Visualization version GIF version |
Description: Substitution of equal classes into element relation. (Contributed by Peter Mazsa, 17-Jul-2019.) |
Ref | Expression |
---|---|
eqelb | ⊢ ((𝐴 = 𝐵 ∧ 𝐴 ∈ 𝐶) ↔ (𝐴 = 𝐵 ∧ 𝐵 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 482 | . . . 4 ⊢ ((𝐵 = 𝐴 ∧ 𝐴 ∈ 𝐶) → 𝐵 = 𝐴) | |
2 | eqeltr 38189 | . . . 4 ⊢ ((𝐵 = 𝐴 ∧ 𝐴 ∈ 𝐶) → 𝐵 ∈ 𝐶) | |
3 | 1, 2 | jca 511 | . . 3 ⊢ ((𝐵 = 𝐴 ∧ 𝐴 ∈ 𝐶) → (𝐵 = 𝐴 ∧ 𝐵 ∈ 𝐶)) |
4 | eqcom 2747 | . . . 4 ⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) | |
5 | 4 | anbi1i 623 | . . 3 ⊢ ((𝐵 = 𝐴 ∧ 𝐴 ∈ 𝐶) ↔ (𝐴 = 𝐵 ∧ 𝐴 ∈ 𝐶)) |
6 | 4 | anbi1i 623 | . . 3 ⊢ ((𝐵 = 𝐴 ∧ 𝐵 ∈ 𝐶) ↔ (𝐴 = 𝐵 ∧ 𝐵 ∈ 𝐶)) |
7 | 3, 5, 6 | 3imtr3i 291 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐴 ∈ 𝐶) → (𝐴 = 𝐵 ∧ 𝐵 ∈ 𝐶)) |
8 | simpl 482 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 = 𝐵) | |
9 | eqeltr 38189 | . . 3 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ 𝐶) | |
10 | 8, 9 | jca 511 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐵 ∈ 𝐶) → (𝐴 = 𝐵 ∧ 𝐴 ∈ 𝐶)) |
11 | 7, 10 | impbii 209 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐴 ∈ 𝐶) ↔ (𝐴 = 𝐵 ∧ 𝐵 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-clel 2819 |
This theorem is referenced by: eldmressnALTV 38228 inxpxrn 38351 |
Copyright terms: Public domain | W3C validator |