Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqelb Structured version   Visualization version   GIF version

Theorem eqelb 36309
Description: Substitution of equal classes into elementhood relation. (Contributed by Peter Mazsa, 17-Jul-2019.)
Assertion
Ref Expression
eqelb ((𝐴 = 𝐵𝐴𝐶) ↔ (𝐴 = 𝐵𝐵𝐶))

Proof of Theorem eqelb
StepHypRef Expression
1 simpl 482 . . . 4 ((𝐵 = 𝐴𝐴𝐶) → 𝐵 = 𝐴)
2 eqeltr 36308 . . . 4 ((𝐵 = 𝐴𝐴𝐶) → 𝐵𝐶)
31, 2jca 511 . . 3 ((𝐵 = 𝐴𝐴𝐶) → (𝐵 = 𝐴𝐵𝐶))
4 eqcom 2745 . . . 4 (𝐵 = 𝐴𝐴 = 𝐵)
54anbi1i 623 . . 3 ((𝐵 = 𝐴𝐴𝐶) ↔ (𝐴 = 𝐵𝐴𝐶))
64anbi1i 623 . . 3 ((𝐵 = 𝐴𝐵𝐶) ↔ (𝐴 = 𝐵𝐵𝐶))
73, 5, 63imtr3i 290 . 2 ((𝐴 = 𝐵𝐴𝐶) → (𝐴 = 𝐵𝐵𝐶))
8 simpl 482 . . 3 ((𝐴 = 𝐵𝐵𝐶) → 𝐴 = 𝐵)
9 eqeltr 36308 . . 3 ((𝐴 = 𝐵𝐵𝐶) → 𝐴𝐶)
108, 9jca 511 . 2 ((𝐴 = 𝐵𝐵𝐶) → (𝐴 = 𝐵𝐴𝐶))
117, 10impbii 208 1 ((𝐴 = 𝐵𝐴𝐶) ↔ (𝐴 = 𝐵𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395   = wceq 1539  wcel 2108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-cleq 2730  df-clel 2817
This theorem is referenced by:  inxpxrn  36448
  Copyright terms: Public domain W3C validator