Mathbox for Peter Mazsa < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqeqan2d Structured version   Visualization version   GIF version

Theorem eqeqan2d 35928
 Description: Implication of introducing a new equality. (Contributed by Peter Mazsa, 17-Apr-2019.)
Hypothesis
Ref Expression
eqeqan2d.1 (𝜑𝐶 = 𝐷)
Assertion
Ref Expression
eqeqan2d ((𝐴 = 𝐵𝜑) → (𝐴 = 𝐶𝐵 = 𝐷))

Proof of Theorem eqeqan2d
StepHypRef Expression
1 eqeqan2d.1 . 2 (𝜑𝐶 = 𝐷)
2 eqeq12 2773 . 2 ((𝐴 = 𝐵𝐶 = 𝐷) → (𝐴 = 𝐶𝐵 = 𝐷))
31, 2sylan2 596 1 ((𝐴 = 𝐵𝜑) → (𝐴 = 𝐶𝐵 = 𝐷))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 400   = wceq 1539 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-9 2122  ax-ext 2730 This theorem depends on definitions:  df-bi 210  df-an 401  df-ex 1783  df-cleq 2751 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator