Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suceqsneq Structured version   Visualization version   GIF version

Theorem suceqsneq 38260
Description: One-to-one relationship between the successor operation and the singleton. (Contributed by Peter Mazsa, 31-Dec-2024.)
Assertion
Ref Expression
suceqsneq (𝐴𝑉 → (suc 𝐴 = suc 𝐵 ↔ {𝐴} = {𝐵}))

Proof of Theorem suceqsneq
StepHypRef Expression
1 suc11reg 9638 . 2 (suc 𝐴 = suc 𝐵𝐴 = 𝐵)
2 sneqbg 4824 . 2 (𝐴𝑉 → ({𝐴} = {𝐵} ↔ 𝐴 = 𝐵))
31, 2bitr4id 290 1 (𝐴𝑉 → (suc 𝐴 = suc 𝐵 ↔ {𝐴} = {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  {csn 4606  suc csuc 6359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734  ax-reg 9611
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-eprel 5558  df-fr 5611  df-suc 6363
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator