Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suceqsneq Structured version   Visualization version   GIF version

Theorem suceqsneq 38218
Description: One-to-one relationship between the successor operation and the singleton. (Contributed by Peter Mazsa, 31-Dec-2024.)
Assertion
Ref Expression
suceqsneq (𝐴𝑉 → (suc 𝐴 = suc 𝐵 ↔ {𝐴} = {𝐵}))

Proof of Theorem suceqsneq
StepHypRef Expression
1 suc11reg 9548 . 2 (suc 𝐴 = suc 𝐵𝐴 = 𝐵)
2 sneqbg 4803 . 2 (𝐴𝑉 → ({𝐴} = {𝐵} ↔ 𝐴 = 𝐵))
31, 2bitr4id 290 1 (𝐴𝑉 → (suc 𝐴 = suc 𝐵 ↔ {𝐴} = {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  {csn 4585  suc csuc 6322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691  ax-reg 9521
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-eprel 5531  df-fr 5584  df-suc 6326
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator