| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > suceqsneq | Structured version Visualization version GIF version | ||
| Description: One-to-one relationship between the successor operation and the singleton. (Contributed by Peter Mazsa, 31-Dec-2024.) |
| Ref | Expression |
|---|---|
| suceqsneq | ⊢ (𝐴 ∈ 𝑉 → (suc 𝐴 = suc 𝐵 ↔ {𝐴} = {𝐵})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suc11reg 9642 | . 2 ⊢ (suc 𝐴 = suc 𝐵 ↔ 𝐴 = 𝐵) | |
| 2 | sneqbg 4825 | . 2 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} ↔ 𝐴 = 𝐵)) | |
| 3 | 1, 2 | bitr4id 290 | 1 ⊢ (𝐴 ∈ 𝑉 → (suc 𝐴 = suc 𝐵 ↔ {𝐴} = {𝐵})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 {csn 4608 suc csuc 6367 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2706 ax-sep 5278 ax-nul 5288 ax-pr 5414 ax-un 7738 ax-reg 9615 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-br 5126 df-opab 5188 df-eprel 5566 df-fr 5619 df-suc 6371 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |