| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > suceqsneq | Structured version Visualization version GIF version | ||
| Description: One-to-one relationship between the successor operation and the singleton. (Contributed by Peter Mazsa, 31-Dec-2024.) |
| Ref | Expression |
|---|---|
| suceqsneq | ⊢ (𝐴 ∈ 𝑉 → (suc 𝐴 = suc 𝐵 ↔ {𝐴} = {𝐵})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suc11reg 9572 | . 2 ⊢ (suc 𝐴 = suc 𝐵 ↔ 𝐴 = 𝐵) | |
| 2 | sneqbg 4807 | . 2 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} ↔ 𝐴 = 𝐵)) | |
| 3 | 1, 2 | bitr4id 290 | 1 ⊢ (𝐴 ∈ 𝑉 → (suc 𝐴 = suc 𝐵 ↔ {𝐴} = {𝐵})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 {csn 4589 suc csuc 6334 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-reg 9545 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-eprel 5538 df-fr 5591 df-suc 6338 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |