Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  suceqsneq Structured version   Visualization version   GIF version

Theorem suceqsneq 36448
Description: One-to-one relationship between the successor operation and the singleton. (Contributed by Peter Mazsa, 31-Dec-2024.)
Assertion
Ref Expression
suceqsneq (𝐴𝑉 → (suc 𝐴 = suc 𝐵 ↔ {𝐴} = {𝐵}))

Proof of Theorem suceqsneq
StepHypRef Expression
1 suc11reg 9429 . 2 (suc 𝐴 = suc 𝐵𝐴 = 𝐵)
2 sneqbg 4780 . 2 (𝐴𝑉 → ({𝐴} = {𝐵} ↔ 𝐴 = 𝐵))
31, 2bitr4id 290 1 (𝐴𝑉 → (suc 𝐴 = suc 𝐵 ↔ {𝐴} = {𝐵}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2104  {csn 4565  suc csuc 6283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361  ax-un 7620  ax-reg 9403
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3341  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-eprel 5506  df-fr 5555  df-suc 6287
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator