Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > suceqsneq | Structured version Visualization version GIF version |
Description: One-to-one relationship between the successor operation and the singleton. (Contributed by Peter Mazsa, 31-Dec-2024.) |
Ref | Expression |
---|---|
suceqsneq | ⊢ (𝐴 ∈ 𝑉 → (suc 𝐴 = suc 𝐵 ↔ {𝐴} = {𝐵})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suc11reg 9429 | . 2 ⊢ (suc 𝐴 = suc 𝐵 ↔ 𝐴 = 𝐵) | |
2 | sneqbg 4780 | . 2 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} ↔ 𝐴 = 𝐵)) | |
3 | 1, 2 | bitr4id 290 | 1 ⊢ (𝐴 ∈ 𝑉 → (suc 𝐴 = suc 𝐵 ↔ {𝐴} = {𝐵})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2104 {csn 4565 suc csuc 6283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-un 7620 ax-reg 9403 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3341 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-opab 5144 df-eprel 5506 df-fr 5555 df-suc 6287 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |