| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqeq12 | Structured version Visualization version GIF version | ||
| Description: Equality relationship among four classes. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2024.) |
| Ref | Expression |
|---|---|
| eqeq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | id 22 | . 2 ⊢ (𝐶 = 𝐷 → 𝐶 = 𝐷) | |
| 3 | 1, 2 | eqeqan12d 2743 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: eqeqan12dALT 2748 funopg 6534 eqfnfv 6985 riotaeqimp 7352 soxp 8085 tfr3 8344 xpdom2 9013 dfac5lem4 10055 dfac5lem4OLD 10057 kmlem9 10088 sornom 10206 zorn2lem6 10430 elwina 10615 elina 10616 bcn1 14254 summo 15659 prodmo 15878 vdwlem12 16939 pslem 18507 gaorb 19215 gsumval3eu 19810 ringinvnz1ne0 20185 cygznlem3 21455 mat1ov 22311 dmatmulcl 22363 scmatscmiddistr 22371 scmatscm 22376 1mavmul 22411 chmatval 22692 dscmet 24436 dscopn 24437 iundisj2 25426 sltval2 27544 wlkres 29572 wlkp1lem8 29582 1wlkdlem4 30042 frgr2wwlk1 30231 iundisj2f 32492 iundisj2fi 32693 pfxwlk 35084 erdszelem9 35159 satfv0 35318 satfv0fun 35331 satffunlem 35361 satffunlem1lem1 35362 satffunlem2lem1 35364 fununiq 35729 bj-opelidb 37113 bj-ideqgALT 37119 bj-idreseq 37123 bj-idreseqb 37124 bj-ideqg1 37125 bj-ideqg1ALT 37126 unirep 37681 eqeqan2d 38197 csbfv12gALTVD 44861 fcoresf1 47043 imasetpreimafvbijlemf1 47378 prproropf1olem4 47480 paireqne 47485 prmdvdsfmtnof1lem2 47559 uspgrsprf1 48108 oppcendc 48980 discsubc 49026 euendfunc 49488 mndtcbas2 49545 |
| Copyright terms: Public domain | W3C validator |