Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqeq12 | Structured version Visualization version GIF version |
Description: Equality relationship among four classes. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2024.) |
Ref | Expression |
---|---|
eqeq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | id 22 | . 2 ⊢ (𝐶 = 𝐷 → 𝐶 = 𝐷) | |
3 | 1, 2 | eqeqan12d 2751 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1781 df-cleq 2729 |
This theorem is referenced by: eqeqan12dALT 2759 funopg 6505 eqfnfv 6949 2f1fvneq 7173 riotaeqimp 7301 soxp 8016 tfr3 8279 xpdom2 8911 dfac5lem4 9962 kmlem9 9994 sornom 10113 zorn2lem6 10337 elwina 10522 elina 10523 bcn1 14107 summo 15508 prodmo 15725 vdwlem12 16770 pslem 18367 gaorb 18989 gsumval3eu 19580 ringinvnz1ne0 19906 cygznlem3 20860 mat1ov 21680 dmatmulcl 21732 scmatscmiddistr 21740 scmatscm 21745 1mavmul 21780 chmatval 22061 dscmet 23811 dscopn 23812 iundisj2 24796 sltval2 26887 wlkres 28174 wlkp1lem8 28184 1wlkdlem4 28640 frgr2wwlk1 28829 iundisj2f 31064 iundisj2fi 31253 pfxwlk 33224 erdszelem9 33300 satfv0 33459 satfv0fun 33472 satffunlem 33502 satffunlem1lem1 33503 satffunlem2lem1 33505 fununiq 33874 bj-opelidb 35395 bj-ideqgALT 35401 bj-idreseq 35405 bj-idreseqb 35406 bj-ideqg1 35407 bj-ideqg1ALT 35408 unirep 35943 eqeqan2d 36465 csbfv12gALTVD 42753 fcoresf1 44828 imasetpreimafvbijlemf1 45121 prproropf1olem4 45223 paireqne 45228 prmdvdsfmtnof1lem2 45302 uspgrsprf1 45574 mndtcbas2 46635 |
Copyright terms: Public domain | W3C validator |