![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqeq12 | Structured version Visualization version GIF version |
Description: Equality relationship among four classes. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2024.) |
Ref | Expression |
---|---|
eqeq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | id 22 | . 2 ⊢ (𝐶 = 𝐷 → 𝐶 = 𝐷) | |
3 | 1, 2 | eqeqan12d 2754 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 |
This theorem is referenced by: eqeqan12dALT 2762 funopg 6612 eqfnfv 7064 2f1fvneq 7297 riotaeqimp 7431 soxp 8170 tfr3 8455 xpdom2 9133 dfac5lem4 10195 dfac5lem4OLD 10197 kmlem9 10228 sornom 10346 zorn2lem6 10570 elwina 10755 elina 10756 bcn1 14362 summo 15765 prodmo 15984 vdwlem12 17039 pslem 18642 gaorb 19347 gsumval3eu 19946 ringinvnz1ne0 20323 cygznlem3 21611 mat1ov 22475 dmatmulcl 22527 scmatscmiddistr 22535 scmatscm 22540 1mavmul 22575 chmatval 22856 dscmet 24606 dscopn 24607 iundisj2 25603 sltval2 27719 wlkres 29706 wlkp1lem8 29716 1wlkdlem4 30172 frgr2wwlk1 30361 iundisj2f 32612 iundisj2fi 32802 pfxwlk 35091 erdszelem9 35167 satfv0 35326 satfv0fun 35339 satffunlem 35369 satffunlem1lem1 35370 satffunlem2lem1 35372 fununiq 35732 bj-opelidb 37118 bj-ideqgALT 37124 bj-idreseq 37128 bj-idreseqb 37129 bj-ideqg1 37130 bj-ideqg1ALT 37131 unirep 37674 eqeqan2d 38191 csbfv12gALTVD 44870 fcoresf1 46984 imasetpreimafvbijlemf1 47278 prproropf1olem4 47380 paireqne 47385 prmdvdsfmtnof1lem2 47459 uspgrsprf1 47870 mndtcbas2 48756 |
Copyright terms: Public domain | W3C validator |