| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqeq12 | Structured version Visualization version GIF version | ||
| Description: Equality relationship among four classes. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2024.) |
| Ref | Expression |
|---|---|
| eqeq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | id 22 | . 2 ⊢ (𝐶 = 𝐷 → 𝐶 = 𝐷) | |
| 3 | 1, 2 | eqeqan12d 2743 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: eqeqan12dALT 2748 funopg 6550 eqfnfv 7003 riotaeqimp 7370 soxp 8108 tfr3 8367 xpdom2 9036 dfac5lem4 10079 dfac5lem4OLD 10081 kmlem9 10112 sornom 10230 zorn2lem6 10454 elwina 10639 elina 10640 bcn1 14278 summo 15683 prodmo 15902 vdwlem12 16963 pslem 18531 gaorb 19239 gsumval3eu 19834 ringinvnz1ne0 20209 cygznlem3 21479 mat1ov 22335 dmatmulcl 22387 scmatscmiddistr 22395 scmatscm 22400 1mavmul 22435 chmatval 22716 dscmet 24460 dscopn 24461 iundisj2 25450 sltval2 27568 wlkres 29598 wlkp1lem8 29608 1wlkdlem4 30069 frgr2wwlk1 30258 iundisj2f 32519 iundisj2fi 32720 pfxwlk 35111 erdszelem9 35186 satfv0 35345 satfv0fun 35358 satffunlem 35388 satffunlem1lem1 35389 satffunlem2lem1 35391 fununiq 35756 bj-opelidb 37140 bj-ideqgALT 37146 bj-idreseq 37150 bj-idreseqb 37151 bj-ideqg1 37152 bj-ideqg1ALT 37153 unirep 37708 eqeqan2d 38224 csbfv12gALTVD 44888 fcoresf1 47070 imasetpreimafvbijlemf1 47405 prproropf1olem4 47507 paireqne 47512 prmdvdsfmtnof1lem2 47586 uspgrsprf1 48135 oppcendc 49007 discsubc 49053 euendfunc 49515 mndtcbas2 49572 |
| Copyright terms: Public domain | W3C validator |