| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqeq12 | Structured version Visualization version GIF version | ||
| Description: Equality relationship among four classes. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2024.) |
| Ref | Expression |
|---|---|
| eqeq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | id 22 | . 2 ⊢ (𝐶 = 𝐷 → 𝐶 = 𝐷) | |
| 3 | 1, 2 | eqeqan12d 2744 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 |
| This theorem is referenced by: eqeqan12dALT 2749 funopg 6553 eqfnfv 7006 riotaeqimp 7373 soxp 8111 tfr3 8370 xpdom2 9041 dfac5lem4 10086 dfac5lem4OLD 10088 kmlem9 10119 sornom 10237 zorn2lem6 10461 elwina 10646 elina 10647 bcn1 14285 summo 15690 prodmo 15909 vdwlem12 16970 pslem 18538 gaorb 19246 gsumval3eu 19841 ringinvnz1ne0 20216 cygznlem3 21486 mat1ov 22342 dmatmulcl 22394 scmatscmiddistr 22402 scmatscm 22407 1mavmul 22442 chmatval 22723 dscmet 24467 dscopn 24468 iundisj2 25457 sltval2 27575 wlkres 29605 wlkp1lem8 29615 1wlkdlem4 30076 frgr2wwlk1 30265 iundisj2f 32526 iundisj2fi 32727 pfxwlk 35118 erdszelem9 35193 satfv0 35352 satfv0fun 35365 satffunlem 35395 satffunlem1lem1 35396 satffunlem2lem1 35398 fununiq 35763 bj-opelidb 37147 bj-ideqgALT 37153 bj-idreseq 37157 bj-idreseqb 37158 bj-ideqg1 37159 bj-ideqg1ALT 37160 unirep 37715 eqeqan2d 38231 csbfv12gALTVD 44895 fcoresf1 47074 imasetpreimafvbijlemf1 47409 prproropf1olem4 47511 paireqne 47516 prmdvdsfmtnof1lem2 47590 uspgrsprf1 48139 oppcendc 49011 discsubc 49057 euendfunc 49519 mndtcbas2 49576 |
| Copyright terms: Public domain | W3C validator |