Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqeq12 | Structured version Visualization version GIF version |
Description: Equality relationship among four classes. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2024.) |
Ref | Expression |
---|---|
eqeq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | id 22 | . 2 ⊢ (𝐶 = 𝐷 → 𝐶 = 𝐷) | |
3 | 1, 2 | eqeqan12d 2752 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2730 |
This theorem is referenced by: eqeqan12dALT 2760 funopg 6468 eqfnfv 6909 2f1fvneq 7133 riotaeqimp 7259 soxp 7970 tfr3 8230 xpdom2 8854 dfac5lem4 9882 kmlem9 9914 sornom 10033 zorn2lem6 10257 elwina 10442 elina 10443 bcn1 14027 summo 15429 prodmo 15646 vdwlem12 16693 pslem 18290 gaorb 18913 gsumval3eu 19505 ringinvnz1ne0 19831 cygznlem3 20777 mat1ov 21597 dmatmulcl 21649 scmatscmiddistr 21657 scmatscm 21662 1mavmul 21697 chmatval 21978 dscmet 23728 dscopn 23729 iundisj2 24713 wlkres 28038 wlkp1lem8 28048 1wlkdlem4 28504 frgr2wwlk1 28693 iundisj2f 30929 iundisj2fi 31118 pfxwlk 33085 erdszelem9 33161 satfv0 33320 satfv0fun 33333 satffunlem 33363 satffunlem1lem1 33364 satffunlem2lem1 33366 fununiq 33743 sltval2 33859 bj-opelidb 35323 bj-ideqgALT 35329 bj-idreseq 35333 bj-idreseqb 35334 bj-ideqg1 35335 bj-ideqg1ALT 35336 unirep 35871 eqeqan2d 36383 csbfv12gALTVD 42519 fcoresf1 44563 imasetpreimafvbijlemf1 44856 prproropf1olem4 44958 paireqne 44963 prmdvdsfmtnof1lem2 45037 uspgrsprf1 45309 mndtcbas2 46370 |
Copyright terms: Public domain | W3C validator |