![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqeq12 | Structured version Visualization version GIF version |
Description: Equality relationship among four classes. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2024.) |
Ref | Expression |
---|---|
eqeq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | id 22 | . 2 ⊢ (𝐶 = 𝐷 → 𝐶 = 𝐷) | |
3 | 1, 2 | eqeqan12d 2746 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-cleq 2724 |
This theorem is referenced by: eqeqan12dALT 2754 funopg 6582 eqfnfv 7032 2f1fvneq 7258 riotaeqimp 7391 soxp 8114 tfr3 8398 xpdom2 9066 dfac5lem4 10120 kmlem9 10152 sornom 10271 zorn2lem6 10495 elwina 10680 elina 10681 bcn1 14272 summo 15662 prodmo 15879 vdwlem12 16924 pslem 18524 gaorb 19170 gsumval3eu 19771 ringinvnz1ne0 20111 cygznlem3 21124 mat1ov 21949 dmatmulcl 22001 scmatscmiddistr 22009 scmatscm 22014 1mavmul 22049 chmatval 22330 dscmet 24080 dscopn 24081 iundisj2 25065 sltval2 27156 wlkres 28924 wlkp1lem8 28934 1wlkdlem4 29390 frgr2wwlk1 29579 iundisj2f 31816 iundisj2fi 32003 pfxwlk 34109 erdszelem9 34185 satfv0 34344 satfv0fun 34357 satffunlem 34387 satffunlem1lem1 34388 satffunlem2lem1 34390 fununiq 34735 bj-opelidb 36028 bj-ideqgALT 36034 bj-idreseq 36038 bj-idreseqb 36039 bj-ideqg1 36040 bj-ideqg1ALT 36041 unirep 36577 eqeqan2d 37097 csbfv12gALTVD 43650 fcoresf1 45769 imasetpreimafvbijlemf1 46062 prproropf1olem4 46164 paireqne 46169 prmdvdsfmtnof1lem2 46243 uspgrsprf1 46515 mndtcbas2 47699 |
Copyright terms: Public domain | W3C validator |