| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqeq12 | Structured version Visualization version GIF version | ||
| Description: Equality relationship among four classes. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2024.) |
| Ref | Expression |
|---|---|
| eqeq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | id 22 | . 2 ⊢ (𝐶 = 𝐷 → 𝐶 = 𝐷) | |
| 3 | 1, 2 | eqeqan12d 2743 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: eqeqan12dALT 2748 funopg 6516 eqfnfv 6965 riotaeqimp 7332 soxp 8062 tfr3 8321 xpdom2 8989 dfac5lem4 10020 dfac5lem4OLD 10022 kmlem9 10053 sornom 10171 zorn2lem6 10395 elwina 10580 elina 10581 bcn1 14220 summo 15624 prodmo 15843 vdwlem12 16904 pslem 18478 gaorb 19186 gsumval3eu 19783 ringinvnz1ne0 20185 cygznlem3 21476 mat1ov 22333 dmatmulcl 22385 scmatscmiddistr 22393 scmatscm 22398 1mavmul 22433 chmatval 22714 dscmet 24458 dscopn 24459 iundisj2 25448 sltval2 27566 wlkres 29614 wlkp1lem8 29624 1wlkdlem4 30084 frgr2wwlk1 30273 iundisj2f 32534 iundisj2fi 32740 pfxwlk 35097 erdszelem9 35172 satfv0 35331 satfv0fun 35344 satffunlem 35374 satffunlem1lem1 35375 satffunlem2lem1 35377 fununiq 35742 bj-opelidb 37126 bj-ideqgALT 37132 bj-idreseq 37136 bj-idreseqb 37137 bj-ideqg1 37138 bj-ideqg1ALT 37139 unirep 37694 eqeqan2d 38210 csbfv12gALTVD 44872 fcoresf1 47053 imasetpreimafvbijlemf1 47388 prproropf1olem4 47490 paireqne 47495 prmdvdsfmtnof1lem2 47569 uspgrsprf1 48131 oppcendc 49003 discsubc 49049 euendfunc 49511 mndtcbas2 49568 |
| Copyright terms: Public domain | W3C validator |