| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqeq12 | Structured version Visualization version GIF version | ||
| Description: Equality relationship among four classes. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2024.) |
| Ref | Expression |
|---|---|
| eqeq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | id 22 | . 2 ⊢ (𝐶 = 𝐷 → 𝐶 = 𝐷) | |
| 3 | 1, 2 | eqeqan12d 2750 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 |
| This theorem is referenced by: eqeqan12dALT 2755 funopg 6575 eqfnfv 7026 riotaeqimp 7393 soxp 8133 tfr3 8418 xpdom2 9086 dfac5lem4 10145 dfac5lem4OLD 10147 kmlem9 10178 sornom 10296 zorn2lem6 10520 elwina 10705 elina 10706 bcn1 14336 summo 15738 prodmo 15957 vdwlem12 17017 pslem 18587 gaorb 19295 gsumval3eu 19890 ringinvnz1ne0 20265 cygznlem3 21535 mat1ov 22391 dmatmulcl 22443 scmatscmiddistr 22451 scmatscm 22456 1mavmul 22491 chmatval 22772 dscmet 24516 dscopn 24517 iundisj2 25507 sltval2 27625 wlkres 29655 wlkp1lem8 29665 1wlkdlem4 30126 frgr2wwlk1 30315 iundisj2f 32576 iundisj2fi 32779 pfxwlk 35151 erdszelem9 35226 satfv0 35385 satfv0fun 35398 satffunlem 35428 satffunlem1lem1 35429 satffunlem2lem1 35431 fununiq 35791 bj-opelidb 37175 bj-ideqgALT 37181 bj-idreseq 37185 bj-idreseqb 37186 bj-ideqg1 37187 bj-ideqg1ALT 37188 unirep 37743 eqeqan2d 38259 csbfv12gALTVD 44890 fcoresf1 47065 imasetpreimafvbijlemf1 47385 prproropf1olem4 47487 paireqne 47492 prmdvdsfmtnof1lem2 47566 uspgrsprf1 48089 oppcendc 48960 discsubc 48998 euendfunc 49378 mndtcbas2 49427 |
| Copyright terms: Public domain | W3C validator |