![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqeq12 | Structured version Visualization version GIF version |
Description: Equality relationship among four classes. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2024.) |
Ref | Expression |
---|---|
eqeq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | id 22 | . 2 ⊢ (𝐶 = 𝐷 → 𝐶 = 𝐷) | |
3 | 1, 2 | eqeqan12d 2749 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-cleq 2727 |
This theorem is referenced by: eqeqan12dALT 2757 funopg 6602 eqfnfv 7051 2f1fvneq 7280 riotaeqimp 7414 soxp 8153 tfr3 8438 xpdom2 9106 dfac5lem4 10164 dfac5lem4OLD 10166 kmlem9 10197 sornom 10315 zorn2lem6 10539 elwina 10724 elina 10725 bcn1 14349 summo 15750 prodmo 15969 vdwlem12 17026 pslem 18630 gaorb 19338 gsumval3eu 19937 ringinvnz1ne0 20314 cygznlem3 21606 mat1ov 22470 dmatmulcl 22522 scmatscmiddistr 22530 scmatscm 22535 1mavmul 22570 chmatval 22851 dscmet 24601 dscopn 24602 iundisj2 25598 sltval2 27716 wlkres 29703 wlkp1lem8 29713 1wlkdlem4 30169 frgr2wwlk1 30358 iundisj2f 32610 iundisj2fi 32805 pfxwlk 35108 erdszelem9 35184 satfv0 35343 satfv0fun 35356 satffunlem 35386 satffunlem1lem1 35387 satffunlem2lem1 35389 fununiq 35750 bj-opelidb 37135 bj-ideqgALT 37141 bj-idreseq 37145 bj-idreseqb 37146 bj-ideqg1 37147 bj-ideqg1ALT 37148 unirep 37701 eqeqan2d 38217 csbfv12gALTVD 44897 fcoresf1 47019 imasetpreimafvbijlemf1 47329 prproropf1olem4 47431 paireqne 47436 prmdvdsfmtnof1lem2 47510 uspgrsprf1 47991 mndtcbas2 48892 |
Copyright terms: Public domain | W3C validator |