![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqeq12 | Structured version Visualization version GIF version |
Description: Equality relationship among four classes. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2024.) |
Ref | Expression |
---|---|
eqeq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | id 22 | . 2 ⊢ (𝐶 = 𝐷 → 𝐶 = 𝐷) | |
3 | 1, 2 | eqeqan12d 2744 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 df-cleq 2722 |
This theorem is referenced by: eqeqan12dALT 2752 funopg 6581 eqfnfv 7031 2f1fvneq 7261 riotaeqimp 7394 soxp 8117 tfr3 8401 xpdom2 9069 dfac5lem4 10123 kmlem9 10155 sornom 10274 zorn2lem6 10498 elwina 10683 elina 10684 bcn1 14277 summo 15667 prodmo 15884 vdwlem12 16929 pslem 18529 gaorb 19212 gsumval3eu 19813 ringinvnz1ne0 20188 cygznlem3 21344 mat1ov 22170 dmatmulcl 22222 scmatscmiddistr 22230 scmatscm 22235 1mavmul 22270 chmatval 22551 dscmet 24301 dscopn 24302 iundisj2 25298 sltval2 27395 wlkres 29194 wlkp1lem8 29204 1wlkdlem4 29660 frgr2wwlk1 29849 iundisj2f 32088 iundisj2fi 32275 pfxwlk 34412 erdszelem9 34488 satfv0 34647 satfv0fun 34660 satffunlem 34690 satffunlem1lem1 34691 satffunlem2lem1 34693 fununiq 35044 bj-opelidb 36336 bj-ideqgALT 36342 bj-idreseq 36346 bj-idreseqb 36347 bj-ideqg1 36348 bj-ideqg1ALT 36349 unirep 36885 eqeqan2d 37405 csbfv12gALTVD 43962 fcoresf1 46077 imasetpreimafvbijlemf1 46370 prproropf1olem4 46472 paireqne 46477 prmdvdsfmtnof1lem2 46551 uspgrsprf1 46823 mndtcbas2 47796 |
Copyright terms: Public domain | W3C validator |