| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqeq12 | Structured version Visualization version GIF version | ||
| Description: Equality relationship among four classes. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2024.) |
| Ref | Expression |
|---|---|
| eqeq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | id 22 | . 2 ⊢ (𝐶 = 𝐷 → 𝐶 = 𝐷) | |
| 3 | 1, 2 | eqeqan12d 2745 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 |
| This theorem is referenced by: eqeqan12dALT 2750 funopg 6515 eqfnfv 6964 riotaeqimp 7329 soxp 8059 tfr3 8318 xpdom2 8985 dfac5lem4 10017 dfac5lem4OLD 10019 kmlem9 10050 sornom 10168 zorn2lem6 10392 elwina 10577 elina 10578 bcn1 14220 summo 15624 prodmo 15843 vdwlem12 16904 pslem 18478 gaorb 19219 gsumval3eu 19816 ringinvnz1ne0 20218 cygznlem3 21506 mat1ov 22363 dmatmulcl 22415 scmatscmiddistr 22423 scmatscm 22428 1mavmul 22463 chmatval 22744 dscmet 24487 dscopn 24488 iundisj2 25477 sltval2 27595 wlkres 29647 wlkp1lem8 29657 1wlkdlem4 30120 frgr2wwlk1 30309 iundisj2f 32570 iundisj2fi 32779 pfxwlk 35168 erdszelem9 35243 satfv0 35402 satfv0fun 35415 satffunlem 35445 satffunlem1lem1 35446 satffunlem2lem1 35448 fununiq 35813 bj-opelidb 37194 bj-ideqgALT 37200 bj-idreseq 37204 bj-idreseqb 37205 bj-ideqg1 37206 bj-ideqg1ALT 37207 unirep 37762 eqeqan2d 38278 csbfv12gALTVD 44939 fcoresf1 47108 imasetpreimafvbijlemf1 47443 prproropf1olem4 47545 paireqne 47550 prmdvdsfmtnof1lem2 47624 uspgrsprf1 48186 oppcendc 49058 discsubc 49104 euendfunc 49566 mndtcbas2 49623 |
| Copyright terms: Public domain | W3C validator |