Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqeq12 | Structured version Visualization version GIF version |
Description: Equality relationship among four classes. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Wolf Lammen, 23-Oct-2024.) |
Ref | Expression |
---|---|
eqeq12 | ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | id 22 | . 2 ⊢ (𝐶 = 𝐷 → 𝐶 = 𝐷) | |
3 | 1, 2 | eqeqan12d 2752 | 1 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → (𝐴 = 𝐶 ↔ 𝐵 = 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 |
This theorem is referenced by: eqeqan12dALT 2760 funopg 6452 eqfnfv 6891 2f1fvneq 7114 riotaeqimp 7239 soxp 7941 tfr3 8201 xpdom2 8807 dfac5lem4 9813 kmlem9 9845 sornom 9964 zorn2lem6 10188 elwina 10373 elina 10374 bcn1 13955 summo 15357 prodmo 15574 vdwlem12 16621 pslem 18205 gaorb 18828 gsumval3eu 19420 ringinvnz1ne0 19746 cygznlem3 20689 mat1ov 21505 dmatmulcl 21557 scmatscmiddistr 21565 scmatscm 21570 1mavmul 21605 chmatval 21886 dscmet 23634 dscopn 23635 iundisj2 24618 wlkres 27940 wlkp1lem8 27950 1wlkdlem4 28405 frgr2wwlk1 28594 iundisj2f 30830 iundisj2fi 31020 pfxwlk 32985 erdszelem9 33061 satfv0 33220 satfv0fun 33233 satffunlem 33263 satffunlem1lem1 33264 satffunlem2lem1 33266 fununiq 33649 sltval2 33786 bj-opelidb 35250 bj-ideqgALT 35256 bj-idreseq 35260 bj-idreseqb 35261 bj-ideqg1 35262 bj-ideqg1ALT 35263 unirep 35798 eqeqan2d 36310 csbfv12gALTVD 42408 fcoresf1 44450 imasetpreimafvbijlemf1 44744 prproropf1olem4 44846 paireqne 44851 prmdvdsfmtnof1lem2 44925 uspgrsprf1 45197 mndtcbas2 46256 |
Copyright terms: Public domain | W3C validator |