| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqid1 | Structured version Visualization version GIF version | ||
| Description: Law of identity
(reflexivity of class equality). Theorem 6.4 of [Quine]
p. 41.
This law is thought to have originated with Aristotle (Metaphysics, Book VII, Part 17). It is one of the three axioms of Ayn Rand's philosophy (Atlas Shrugged, Part Three, Chapter VII). While some have proposed extending Rand's axiomatization to include Compassion and Kindness, others fear that such an extension may flirt with logical inconsistency. (Contributed by Stefan Allan, 1-Apr-2009.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| eqid1 | ⊢ 𝐴 = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biid 261 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) | |
| 2 | 1 | eqriv 2733 | 1 ⊢ 𝐴 = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2728 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |