![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqid1 | Structured version Visualization version GIF version |
Description: Law of identity
(reflexivity of class equality). Theorem 6.4 of [Quine]
p. 41.
This law is thought to have originated with Aristotle (Metaphysics, Book VII, Part 17). It is one of the three axioms of Ayn Rand's philosophy (Atlas Shrugged, Part Three, Chapter VII). While some have proposed extending Rand's axiomatization to include Compassion and Kindness, others fear that such an extension may flirt with logical inconsistency. (Contributed by Stefan Allan, 1-Apr-2009.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
eqid1 | ⊢ 𝐴 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biid 253 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) | |
2 | 1 | eqriv 2822 | 1 ⊢ 𝐴 = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1656 ∈ wcel 2164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-9 2173 ax-ext 2803 |
This theorem depends on definitions: df-bi 199 df-an 387 df-ex 1879 df-cleq 2818 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |