MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1div0apr Structured version   Visualization version   GIF version

Theorem 1div0apr 29721
Description: Division by zero is forbidden! If we try, we encounter the DO NOT ENTER sign, which in mathematics means it is foolhardy to venture any further, possibly putting the underlying fabric of reality at risk. Based on a dare by David A. Wheeler. (Contributed by Mario Carneiro, 1-Apr-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
1div0apr (1 / 0) = โˆ…

Proof of Theorem 1div0apr
Dummy variables ๐‘ฅ ๐‘ฆ ๐‘ง are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-div 11872 . . 3 / = (๐‘ฅ โˆˆ โ„‚, ๐‘ฆ โˆˆ (โ„‚ โˆ– {0}) โ†ฆ (โ„ฉ๐‘ง โˆˆ โ„‚ (๐‘ฆ ยท ๐‘ง) = ๐‘ฅ))
2 riotaex 7369 . . 3 (โ„ฉ๐‘ง โˆˆ โ„‚ (๐‘ฆ ยท ๐‘ง) = ๐‘ฅ) โˆˆ V
31, 2dmmpo 8057 . 2 dom / = (โ„‚ ร— (โ„‚ โˆ– {0}))
4 eqid 2733 . . 3 0 = 0
5 eldifsni 4794 . . . . 5 (0 โˆˆ (โ„‚ โˆ– {0}) โ†’ 0 โ‰  0)
65adantl 483 . . . 4 ((1 โˆˆ โ„‚ โˆง 0 โˆˆ (โ„‚ โˆ– {0})) โ†’ 0 โ‰  0)
76necon2bi 2972 . . 3 (0 = 0 โ†’ ยฌ (1 โˆˆ โ„‚ โˆง 0 โˆˆ (โ„‚ โˆ– {0})))
84, 7ax-mp 5 . 2 ยฌ (1 โˆˆ โ„‚ โˆง 0 โˆˆ (โ„‚ โˆ– {0}))
9 ndmovg 7590 . 2 ((dom / = (โ„‚ ร— (โ„‚ โˆ– {0})) โˆง ยฌ (1 โˆˆ โ„‚ โˆง 0 โˆˆ (โ„‚ โˆ– {0}))) โ†’ (1 / 0) = โˆ…)
103, 8, 9mp2an 691 1 (1 / 0) = โˆ…
Colors of variables: wff setvar class
Syntax hints:  ยฌ wn 3   โˆง wa 397   = wceq 1542   โˆˆ wcel 2107   โ‰  wne 2941   โˆ– cdif 3946  โˆ…c0 4323  {csn 4629   ร— cxp 5675  dom cdm 5677  โ„ฉcrio 7364  (class class class)co 7409  โ„‚cc 11108  0cc0 11110  1c1 11111   ยท cmul 11115   / cdiv 11871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-1st 7975  df-2nd 7976  df-div 11872
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator