![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1div0apr | Structured version Visualization version GIF version |
Description: Division by zero is forbidden! If we try, we encounter the DO NOT ENTER sign, which in mathematics means it is foolhardy to venture any further, possibly putting the underlying fabric of reality at risk. Based on a dare by David A. Wheeler. (Contributed by Mario Carneiro, 1-Apr-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
1div0apr | ⊢ (1 / 0) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-div 11948 | . . 3 ⊢ / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥)) | |
2 | riotaex 7408 | . . 3 ⊢ (℩𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) ∈ V | |
3 | 1, 2 | dmmpo 8112 | . 2 ⊢ dom / = (ℂ × (ℂ ∖ {0})) |
4 | eqid 2740 | . . 3 ⊢ 0 = 0 | |
5 | eldifsni 4815 | . . . . 5 ⊢ (0 ∈ (ℂ ∖ {0}) → 0 ≠ 0) | |
6 | 5 | adantl 481 | . . . 4 ⊢ ((1 ∈ ℂ ∧ 0 ∈ (ℂ ∖ {0})) → 0 ≠ 0) |
7 | 6 | necon2bi 2977 | . . 3 ⊢ (0 = 0 → ¬ (1 ∈ ℂ ∧ 0 ∈ (ℂ ∖ {0}))) |
8 | 4, 7 | ax-mp 5 | . 2 ⊢ ¬ (1 ∈ ℂ ∧ 0 ∈ (ℂ ∖ {0})) |
9 | ndmovg 7633 | . 2 ⊢ ((dom / = (ℂ × (ℂ ∖ {0})) ∧ ¬ (1 ∈ ℂ ∧ 0 ∈ (ℂ ∖ {0}))) → (1 / 0) = ∅) | |
10 | 3, 8, 9 | mp2an 691 | 1 ⊢ (1 / 0) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∖ cdif 3973 ∅c0 4352 {csn 4648 × cxp 5698 dom cdm 5700 ℩crio 7403 (class class class)co 7448 ℂcc 11182 0cc0 11184 1c1 11185 · cmul 11189 / cdiv 11947 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-div 11948 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |