MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1div0apr Structured version   Visualization version   GIF version

Theorem 1div0apr 28733
Description: Division by zero is forbidden! If we try, we encounter the DO NOT ENTER sign, which in mathematics means it is foolhardy to venture any further, possibly putting the underlying fabric of reality at risk. Based on a dare by David A. Wheeler. (Contributed by Mario Carneiro, 1-Apr-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
1div0apr (1 / 0) = ∅

Proof of Theorem 1div0apr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-div 11563 . . 3 / = (𝑥 ∈ ℂ, 𝑦 ∈ (ℂ ∖ {0}) ↦ (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥))
2 riotaex 7216 . . 3 (𝑧 ∈ ℂ (𝑦 · 𝑧) = 𝑥) ∈ V
31, 2dmmpo 7884 . 2 dom / = (ℂ × (ℂ ∖ {0}))
4 eqid 2738 . . 3 0 = 0
5 eldifsni 4720 . . . . 5 (0 ∈ (ℂ ∖ {0}) → 0 ≠ 0)
65adantl 481 . . . 4 ((1 ∈ ℂ ∧ 0 ∈ (ℂ ∖ {0})) → 0 ≠ 0)
76necon2bi 2973 . . 3 (0 = 0 → ¬ (1 ∈ ℂ ∧ 0 ∈ (ℂ ∖ {0})))
84, 7ax-mp 5 . 2 ¬ (1 ∈ ℂ ∧ 0 ∈ (ℂ ∖ {0}))
9 ndmovg 7433 . 2 ((dom / = (ℂ × (ℂ ∖ {0})) ∧ ¬ (1 ∈ ℂ ∧ 0 ∈ (ℂ ∖ {0}))) → (1 / 0) = ∅)
103, 8, 9mp2an 688 1 (1 / 0) = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 395   = wceq 1539  wcel 2108  wne 2942  cdif 3880  c0 4253  {csn 4558   × cxp 5578  dom cdm 5580  crio 7211  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   · cmul 10807   / cdiv 11562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-div 11563
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator