![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 1div0apr | Structured version Visualization version GIF version |
Description: Division by zero is forbidden! If we try, we encounter the DO NOT ENTER sign, which in mathematics means it is foolhardy to venture any further, possibly putting the underlying fabric of reality at risk. Based on a dare by David A. Wheeler. (Contributed by Mario Carneiro, 1-Apr-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
1div0apr | โข (1 / 0) = โ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-div 11872 | . . 3 โข / = (๐ฅ โ โ, ๐ฆ โ (โ โ {0}) โฆ (โฉ๐ง โ โ (๐ฆ ยท ๐ง) = ๐ฅ)) | |
2 | riotaex 7369 | . . 3 โข (โฉ๐ง โ โ (๐ฆ ยท ๐ง) = ๐ฅ) โ V | |
3 | 1, 2 | dmmpo 8057 | . 2 โข dom / = (โ ร (โ โ {0})) |
4 | eqid 2733 | . . 3 โข 0 = 0 | |
5 | eldifsni 4794 | . . . . 5 โข (0 โ (โ โ {0}) โ 0 โ 0) | |
6 | 5 | adantl 483 | . . . 4 โข ((1 โ โ โง 0 โ (โ โ {0})) โ 0 โ 0) |
7 | 6 | necon2bi 2972 | . . 3 โข (0 = 0 โ ยฌ (1 โ โ โง 0 โ (โ โ {0}))) |
8 | 4, 7 | ax-mp 5 | . 2 โข ยฌ (1 โ โ โง 0 โ (โ โ {0})) |
9 | ndmovg 7590 | . 2 โข ((dom / = (โ ร (โ โ {0})) โง ยฌ (1 โ โ โง 0 โ (โ โ {0}))) โ (1 / 0) = โ ) | |
10 | 3, 8, 9 | mp2an 691 | 1 โข (1 / 0) = โ |
Colors of variables: wff setvar class |
Syntax hints: ยฌ wn 3 โง wa 397 = wceq 1542 โ wcel 2107 โ wne 2941 โ cdif 3946 โ c0 4323 {csn 4629 ร cxp 5675 dom cdm 5677 โฉcrio 7364 (class class class)co 7409 โcc 11108 0cc0 11110 1c1 11111 ยท cmul 11115 / cdiv 11871 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-1st 7975 df-2nd 7976 df-div 11872 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |