| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqriv | Structured version Visualization version GIF version | ||
| Description: Infer equality of classes from equivalence of membership. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| eqriv.1 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| eqriv | ⊢ 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2726 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | eqriv.1 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) | |
| 3 | 1, 2 | mpgbir 1800 | 1 ⊢ 𝐴 = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2113 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2725 |
| This theorem is referenced by: eqid 2733 cbvabv 2803 cbvabw 2804 cbvab 2805 vjust 3438 rabtru 3641 nfccdeq 3733 csbgfi 3866 difeqri 4077 uneqri 4105 ineqri 4161 symdifass 4211 indifdi 4243 undif3 4249 csbcom 4369 csbab 4389 pwpr 4852 pwtp 4853 pwv 4855 uniun 4881 int0 4912 intun 4930 iuncom 4949 iuncom4 4950 iunin2 5021 iinun2 5023 iundif2 5024 iunun 5043 iunxun 5044 iunxiun 5047 iinpw 5056 inuni 5290 unipw 5393 xpiundi 5690 xpiundir 5691 iunxpf 5792 cnvuni 5830 dmiun 5857 dmuni 5858 idinxpres 6000 rniun 6099 xpdifid 6120 cnvresima 6182 imaco 6203 rnco 6204 rncoOLD 6205 imaindm 6251 dfmpt3 6620 imaiun 7185 unon 7767 opabex3d 7903 opabex3rd 7904 opabex3 7905 fparlem1 8048 fparlem2 8049 oarec 8483 ecid 8710 qsid 8711 mapval2 8802 ixpin 8853 onfin2 9132 unfilem1 9196 unifpw 9246 dfom5 9547 alephsuc2 9978 ackbij2 10140 isf33lem 10264 dffin7-2 10296 fin1a2lem6 10303 acncc 10338 fin41 10342 iunfo 10437 grutsk 10720 grothac 10728 grothtsk 10733 dfz2 12494 qexALT 12864 dfrp2 13296 om2uzrani 13861 hashkf 14241 divalglem4 16309 1nprm 16592 nsgacs 19076 oppgsubm 19276 oppgsubg 19277 oppgcntz 19278 pmtrprfvalrn 19402 opprsubg 20272 opprunit 20297 opprirred 20342 opprsubrng 20476 opprsubrg 20510 00lss 20876 dfprm2 21412 unocv 21619 iunocv 21620 00ply1bas 22153 toprntopon 22841 unisngl 23443 zcld 24730 iundisj 25477 plyun0 26130 aannenlem2 26265 eqid1 30449 choc0 31308 chocnul 31310 spanunsni 31561 lncnbd 32020 adjbd1o 32067 rnbra 32089 pjimai 32158 iunin1f 32539 iundisjf 32571 xrdifh 32767 iundisjfi 32783 opprnsg 33456 ccfldextdgrr 33706 cmpcref 33884 eulerpartgbij 34406 eulerpartlemr 34408 oddprm2 34689 dfdm5 35838 dfrn5 35839 dffix2 35968 fixcnv 35971 dfom5b 35975 fnimage 35992 brimg 36000 bj-csbsnlem 36968 bj-projun 37059 bj-pw0ALT 37114 bj-vjust 37120 finxp1o 37457 iundif1 37655 poimirlem26 37707 csbcom2fi 38189 dfsucmap3 38497 prtlem16 38989 sn-iotalem 42340 redvmptabs 42479 aaitgo 43280 imaiun1 43769 grumnueq 44405 nzss 44435 dfodd2 47761 dfeven5 47791 dfodd7 47792 ixpv 49015 isoval2 49161 oppcciceq 49178 oppczeroo 49363 dfinito4 49627 lmdfval2 49781 cmdfval2 49782 initocmd 49795 termolmd 49796 |
| Copyright terms: Public domain | W3C validator |