![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqriv | Structured version Visualization version GIF version |
Description: Infer equality of classes from equivalence of membership. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
eqriv.1 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
Ref | Expression |
---|---|
eqriv | ⊢ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2727 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | eqriv.1 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) | |
3 | 1, 2 | mpgbir 1795 | 1 ⊢ 𝐴 = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1536 ∈ wcel 2105 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-cleq 2726 |
This theorem is referenced by: eqid 2734 cbvabv 2809 cbvabw 2810 cbvab 2811 vjust 3478 rabtru 3691 nfccdeq 3786 csbgfi 3928 difeqri 4137 uneqri 4165 ineqri 4219 symdifass 4267 indifdi 4299 undif3 4305 csbcom 4425 csbab 4445 pwpr 4905 pwtp 4906 pwv 4908 uniun 4934 int0 4966 intun 4984 iuncom 5003 iuncom4 5004 iunin2 5075 iinun2 5077 iundif2 5078 iunun 5097 iunxun 5098 iunxiun 5101 iinpw 5110 inuni 5355 unipw 5460 xpiundi 5758 xpiundir 5759 iunxpf 5861 cnvuni 5899 dmiun 5926 dmuni 5927 idinxpres 6066 rniun 6169 xpdifid 6189 cnvresima 6251 imaco 6272 rnco 6273 imaindm 6320 dfmpt3 6702 imaiun 7264 unon 7850 opabex3d 7988 opabex3rd 7989 opabex3 7990 fparlem1 8135 fparlem2 8136 oarec 8598 ecid 8820 qsid 8821 mapval2 8910 ixpin 8961 onfin2 9265 unfilem1 9340 unifpw 9392 dfom5 9687 alephsuc2 10117 ackbij2 10279 isf33lem 10403 dffin7-2 10435 fin1a2lem6 10442 acncc 10477 fin41 10481 iunfo 10576 grutsk 10859 grothac 10867 grothtsk 10872 dfz2 12629 qexALT 13003 dfrp2 13432 om2uzrani 13989 hashkf 14367 divalglem4 16429 1nprm 16712 nsgacs 19192 oppgsubm 19395 oppgsubg 19396 oppgcntz 19397 pmtrprfvalrn 19520 opprsubg 20368 opprunit 20393 opprirred 20438 opprsubrng 20575 opprsubrg 20609 00lss 20956 dfprm2 21501 unocv 21715 iunocv 21716 00ply1bas 22256 toprntopon 22946 unisngl 23550 zcld 24848 iundisj 25596 plyun0 26250 aannenlem2 26385 eqid1 30495 choc0 31354 chocnul 31356 spanunsni 31607 lncnbd 32066 adjbd1o 32113 rnbra 32135 pjimai 32204 iunin1f 32577 iundisjf 32608 xrdifh 32788 iundisjfi 32803 opprnsg 33491 ccfldextdgrr 33696 cmpcref 33810 eulerpartgbij 34353 eulerpartlemr 34355 oddprm2 34648 dfdm5 35753 dfrn5 35754 dffix2 35886 fixcnv 35889 dfom5b 35893 fnimage 35910 brimg 35918 bj-csbsnlem 36885 bj-projun 36976 bj-pw0ALT 37031 bj-vjust 37037 finxp1o 37374 iundif1 37580 poimirlem26 37632 csbcom2fi 38114 prtlem16 38850 sn-iotalem 42238 redvmptabs 42368 aaitgo 43150 imaiun1 43640 grumnueq 44282 nzss 44312 dfodd2 47560 dfeven5 47590 dfodd7 47591 |
Copyright terms: Public domain | W3C validator |