![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqriv | Structured version Visualization version GIF version |
Description: Infer equality of classes from equivalence of membership. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
eqriv.1 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
Ref | Expression |
---|---|
eqriv | ⊢ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2789 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | eqriv.1 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) | |
3 | 1, 2 | mpgbir 1781 | 1 ⊢ 𝐴 = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 = wceq 1522 ∈ wcel 2081 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-9 2091 ax-ext 2769 |
This theorem depends on definitions: df-bi 208 df-an 397 df-ex 1762 df-cleq 2788 |
This theorem is referenced by: eqid 2795 cbvabv 2927 cbvab 2928 vjust 3438 rabtru 3616 nfccdeq 3706 csbgfi 3833 difeqri 4026 uneqri 4052 incom 4103 ineqri 4104 symdifass 4152 indifdir 4184 undif3 4189 csbcom 4293 csbab 4308 pwpr 4743 pwtp 4744 pwv 4746 uniun 4768 int0 4800 intun 4818 intpr 4819 iuncom 4836 iuncom4 4837 iunin2 4896 iinun2 4898 iundif2 4899 iunun 4918 iunxun 4919 iunxiun 4922 iinpw 4931 inuni 5142 unipw 5239 xpiundi 5513 xpiundir 5514 iunxpf 5610 cnvuni 5648 dmiun 5673 dmuni 5674 idinxpres 5800 epini 5840 rniun 5887 xpdifid 5906 cnvresima 5967 imaco 5984 rnco 5985 dfmpt3 6355 imaiun 6874 unon 7407 opabex3d 7527 opabex3rd 7528 opabex3 7529 fparlem1 7668 fparlem2 7669 oarec 8043 ecid 8217 qsid 8218 mapval2 8291 ixpin 8340 onfin2 8561 unfilem1 8633 unifpw 8678 dfom5 8964 alephsuc2 9357 ackbij2 9516 isf33lem 9639 dffin7-2 9671 fin1a2lem6 9678 acncc 9713 fin41 9717 iunfo 9812 grutsk 10095 grothac 10103 grothtsk 10108 dfz2 11853 qexALT 12218 om2uzrani 13175 hashkf 13547 divalglem4 15585 1nprm 15857 nsgacs 18074 oppgsubm 18236 oppgsubg 18237 oppgcntz 18238 pmtrprfvalrn 18352 opprsubg 19081 opprunit 19106 opprirred 19147 opprsubrg 19251 00lss 19408 00ply1bas 20096 dfprm2 20328 unocv 20511 iunocv 20512 toprntopon 21222 unisngl 21824 zcld 23109 iundisj 23837 plyun0 24475 aannenlem2 24606 eqid1 27942 choc0 28799 chocnul 28801 spanunsni 29052 lncnbd 29511 adjbd1o 29558 rnbra 29580 pjimai 29649 iunin1f 30004 iundisjf 30034 dfrp2 30184 xrdifh 30196 iundisjfi 30210 ccfldextdgrr 30666 cmpcref 30736 eulerpartgbij 31252 eulerpartlemr 31254 oddprm2 31548 dfdm5 32631 dfrn5 32632 imaindm 32637 dffix2 32982 fixcnv 32985 dfom5b 32989 fnimage 33006 brimg 33014 bj-csbsnlem 33802 bj-projun 33937 bj-vjust 33970 finxp1o 34230 wl-dfrabv 34419 iundif1 34423 poimirlem26 34475 csbcom2fi 34964 prtlem16 35562 aaitgo 39273 imaiun1 39507 grumnueq 40146 nzss 40213 dfodd2 43310 dfeven5 43340 dfodd7 43341 |
Copyright terms: Public domain | W3C validator |