| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqriv | Structured version Visualization version GIF version | ||
| Description: Infer equality of classes from equivalence of membership. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| eqriv.1 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| eqriv | ⊢ 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2724 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | eqriv.1 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) | |
| 3 | 1, 2 | mpgbir 1800 | 1 ⊢ 𝐴 = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∈ wcel 2111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 |
| This theorem is referenced by: eqid 2731 cbvabv 2801 cbvabw 2802 cbvab 2803 vjust 3437 rabtru 3645 nfccdeq 3737 csbgfi 3870 difeqri 4078 uneqri 4106 ineqri 4162 symdifass 4212 indifdi 4244 undif3 4250 csbcom 4370 csbab 4390 pwpr 4853 pwtp 4854 pwv 4856 uniun 4882 int0 4912 intun 4930 iuncom 4949 iuncom4 4950 iunin2 5019 iinun2 5021 iundif2 5022 iunun 5041 iunxun 5042 iunxiun 5045 iinpw 5054 inuni 5288 unipw 5391 xpiundi 5687 xpiundir 5688 iunxpf 5788 cnvuni 5826 dmiun 5853 dmuni 5854 idinxpres 5996 rniun 6094 xpdifid 6115 cnvresima 6177 imaco 6198 rnco 6199 rncoOLD 6200 imaindm 6246 dfmpt3 6615 imaiun 7179 unon 7761 opabex3d 7897 opabex3rd 7898 opabex3 7899 fparlem1 8042 fparlem2 8043 oarec 8477 ecid 8704 qsid 8705 mapval2 8796 ixpin 8847 onfin2 9125 unfilem1 9189 unifpw 9239 dfom5 9540 alephsuc2 9968 ackbij2 10130 isf33lem 10254 dffin7-2 10286 fin1a2lem6 10293 acncc 10328 fin41 10332 iunfo 10427 grutsk 10710 grothac 10718 grothtsk 10723 dfz2 12484 qexALT 12859 dfrp2 13291 om2uzrani 13856 hashkf 14236 divalglem4 16304 1nprm 16587 nsgacs 19072 oppgsubm 19272 oppgsubg 19273 oppgcntz 19274 pmtrprfvalrn 19398 opprsubg 20268 opprunit 20293 opprirred 20338 opprsubrng 20472 opprsubrg 20506 00lss 20872 dfprm2 21408 unocv 21615 iunocv 21616 00ply1bas 22150 toprntopon 22838 unisngl 23440 zcld 24727 iundisj 25474 plyun0 26127 aannenlem2 26262 eqid1 30442 choc0 31301 chocnul 31303 spanunsni 31554 lncnbd 32013 adjbd1o 32060 rnbra 32082 pjimai 32151 iunin1f 32532 iundisjf 32564 xrdifh 32758 iundisjfi 32773 opprnsg 33444 ccfldextdgrr 33680 cmpcref 33858 eulerpartgbij 34380 eulerpartlemr 34382 oddprm2 34663 dfdm5 35805 dfrn5 35806 dffix2 35938 fixcnv 35941 dfom5b 35945 fnimage 35962 brimg 35970 bj-csbsnlem 36936 bj-projun 37027 bj-pw0ALT 37082 bj-vjust 37088 finxp1o 37425 iundif1 37633 poimirlem26 37685 csbcom2fi 38167 prtlem16 38907 sn-iotalem 42253 redvmptabs 42392 aaitgo 43194 imaiun1 43683 grumnueq 44319 nzss 44349 dfodd2 47666 dfeven5 47696 dfodd7 47697 ixpv 48920 isoval2 49066 oppcciceq 49083 oppczeroo 49268 dfinito4 49532 lmdfval2 49686 cmdfval2 49687 initocmd 49700 termolmd 49701 |
| Copyright terms: Public domain | W3C validator |