| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqriv | Structured version Visualization version GIF version | ||
| Description: Infer equality of classes from equivalence of membership. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| eqriv.1 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| eqriv | ⊢ 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2722 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | eqriv.1 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) | |
| 3 | 1, 2 | mpgbir 1799 | 1 ⊢ 𝐴 = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: eqid 2729 cbvabv 2799 cbvabw 2800 cbvab 2801 vjust 3439 rabtru 3647 nfccdeq 3740 csbgfi 3873 difeqri 4081 uneqri 4109 ineqri 4165 symdifass 4215 indifdi 4247 undif3 4253 csbcom 4373 csbab 4393 pwpr 4855 pwtp 4856 pwv 4858 uniun 4884 int0 4915 intun 4933 iuncom 4952 iuncom4 4953 iunin2 5023 iinun2 5025 iundif2 5026 iunun 5045 iunxun 5046 iunxiun 5049 iinpw 5058 inuni 5292 unipw 5397 xpiundi 5694 xpiundir 5695 iunxpf 5795 cnvuni 5833 dmiun 5860 dmuni 5861 idinxpres 6002 rniun 6100 xpdifid 6121 cnvresima 6183 imaco 6204 rnco 6205 imaindm 6251 dfmpt3 6620 imaiun 7185 unon 7770 opabex3d 7907 opabex3rd 7908 opabex3 7909 fparlem1 8052 fparlem2 8053 oarec 8487 ecid 8714 qsid 8715 mapval2 8806 ixpin 8857 onfin2 9140 unfilem1 9212 unifpw 9264 dfom5 9565 alephsuc2 9993 ackbij2 10155 isf33lem 10279 dffin7-2 10311 fin1a2lem6 10318 acncc 10353 fin41 10357 iunfo 10452 grutsk 10735 grothac 10743 grothtsk 10748 dfz2 12508 qexALT 12883 dfrp2 13315 om2uzrani 13877 hashkf 14257 divalglem4 16325 1nprm 16608 nsgacs 19059 oppgsubm 19259 oppgsubg 19260 oppgcntz 19261 pmtrprfvalrn 19385 opprsubg 20255 opprunit 20280 opprirred 20325 opprsubrng 20462 opprsubrg 20496 00lss 20862 dfprm2 21398 unocv 21605 iunocv 21606 00ply1bas 22140 toprntopon 22828 unisngl 23430 zcld 24718 iundisj 25465 plyun0 26118 aannenlem2 26253 eqid1 30429 choc0 31288 chocnul 31290 spanunsni 31541 lncnbd 32000 adjbd1o 32047 rnbra 32069 pjimai 32138 iunin1f 32519 iundisjf 32551 xrdifh 32736 iundisjfi 32752 opprnsg 33431 ccfldextdgrr 33643 cmpcref 33816 eulerpartgbij 34339 eulerpartlemr 34341 oddprm2 34622 dfdm5 35745 dfrn5 35746 dffix2 35878 fixcnv 35881 dfom5b 35885 fnimage 35902 brimg 35910 bj-csbsnlem 36876 bj-projun 36967 bj-pw0ALT 37022 bj-vjust 37028 finxp1o 37365 iundif1 37573 poimirlem26 37625 csbcom2fi 38107 prtlem16 38847 sn-iotalem 42194 redvmptabs 42333 aaitgo 43135 imaiun1 43624 grumnueq 44260 nzss 44290 dfodd2 47621 dfeven5 47651 dfodd7 47652 ixpv 48875 isoval2 49021 oppcciceq 49038 oppczeroo 49223 dfinito4 49487 lmdfval2 49641 cmdfval2 49642 initocmd 49655 termolmd 49656 |
| Copyright terms: Public domain | W3C validator |