| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqriv | Structured version Visualization version GIF version | ||
| Description: Infer equality of classes from equivalence of membership. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| eqriv.1 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| eqriv | ⊢ 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2728 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | eqriv.1 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) | |
| 3 | 1, 2 | mpgbir 1799 | 1 ⊢ 𝐴 = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 |
| This theorem is referenced by: eqid 2735 cbvabv 2805 cbvabw 2806 cbvab 2807 vjust 3460 rabtru 3668 nfccdeq 3761 csbgfi 3894 difeqri 4103 uneqri 4131 ineqri 4187 symdifass 4237 indifdi 4269 undif3 4275 csbcom 4395 csbab 4415 pwpr 4877 pwtp 4878 pwv 4880 uniun 4906 int0 4938 intun 4956 iuncom 4975 iuncom4 4976 iunin2 5047 iinun2 5049 iundif2 5050 iunun 5069 iunxun 5070 iunxiun 5073 iinpw 5082 inuni 5320 unipw 5425 xpiundi 5725 xpiundir 5726 iunxpf 5828 cnvuni 5866 dmiun 5893 dmuni 5894 idinxpres 6034 rniun 6136 xpdifid 6157 cnvresima 6219 imaco 6240 rnco 6241 imaindm 6288 dfmpt3 6672 imaiun 7237 unon 7825 opabex3d 7964 opabex3rd 7965 opabex3 7966 fparlem1 8111 fparlem2 8112 oarec 8574 ecid 8796 qsid 8797 mapval2 8886 ixpin 8937 onfin2 9240 unfilem1 9315 unifpw 9367 dfom5 9664 alephsuc2 10094 ackbij2 10256 isf33lem 10380 dffin7-2 10412 fin1a2lem6 10419 acncc 10454 fin41 10458 iunfo 10553 grutsk 10836 grothac 10844 grothtsk 10849 dfz2 12607 qexALT 12980 dfrp2 13411 om2uzrani 13970 hashkf 14350 divalglem4 16415 1nprm 16698 nsgacs 19145 oppgsubm 19345 oppgsubg 19346 oppgcntz 19347 pmtrprfvalrn 19469 opprsubg 20312 opprunit 20337 opprirred 20382 opprsubrng 20519 opprsubrg 20553 00lss 20898 dfprm2 21434 unocv 21640 iunocv 21641 00ply1bas 22175 toprntopon 22863 unisngl 23465 zcld 24753 iundisj 25501 plyun0 26154 aannenlem2 26289 eqid1 30448 choc0 31307 chocnul 31309 spanunsni 31560 lncnbd 32019 adjbd1o 32066 rnbra 32088 pjimai 32157 iunin1f 32538 iundisjf 32570 xrdifh 32757 iundisjfi 32773 opprnsg 33499 ccfldextdgrr 33713 cmpcref 33881 eulerpartgbij 34404 eulerpartlemr 34406 oddprm2 34687 dfdm5 35790 dfrn5 35791 dffix2 35923 fixcnv 35926 dfom5b 35930 fnimage 35947 brimg 35955 bj-csbsnlem 36921 bj-projun 37012 bj-pw0ALT 37067 bj-vjust 37073 finxp1o 37410 iundif1 37618 poimirlem26 37670 csbcom2fi 38152 prtlem16 38887 sn-iotalem 42272 redvmptabs 42403 aaitgo 43186 imaiun1 43675 grumnueq 44311 nzss 44341 dfodd2 47650 dfeven5 47680 dfodd7 47681 ixpv 48865 oppcciceq 49019 oppczeroo 49154 dfinito4 49386 lmdfval2 49527 cmdfval2 49528 |
| Copyright terms: Public domain | W3C validator |