![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eqriv | Structured version Visualization version GIF version |
Description: Infer equality of classes from equivalence of membership. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
eqriv.1 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
Ref | Expression |
---|---|
eqriv | ⊢ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2733 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | eqriv.1 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) | |
3 | 1, 2 | mpgbir 1797 | 1 ⊢ 𝐴 = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1537 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 |
This theorem is referenced by: eqid 2740 cbvabv 2815 cbvabw 2816 cbvab 2817 vjust 3489 rabtru 3705 nfccdeq 3800 csbgfi 3942 difeqri 4151 uneqri 4179 ineqri 4233 symdifass 4281 indifdi 4313 undif3 4319 csbcom 4443 csbab 4463 pwpr 4925 pwtp 4926 pwv 4928 uniun 4954 int0 4986 intun 5004 iuncom 5022 iuncom4 5023 iunin2 5094 iinun2 5096 iundif2 5097 iunun 5116 iunxun 5117 iunxiun 5120 iinpw 5129 inuni 5368 unipw 5470 xpiundi 5770 xpiundir 5771 iunxpf 5873 cnvuni 5911 dmiun 5938 dmuni 5939 idinxpres 6076 rniun 6179 xpdifid 6199 cnvresima 6261 imaco 6282 rnco 6283 imaindm 6330 dfmpt3 6714 imaiun 7282 unon 7867 opabex3d 8006 opabex3rd 8007 opabex3 8008 fparlem1 8153 fparlem2 8154 oarec 8618 ecid 8840 qsid 8841 mapval2 8930 ixpin 8981 onfin2 9294 unfilem1 9371 unifpw 9425 dfom5 9719 alephsuc2 10149 ackbij2 10311 isf33lem 10435 dffin7-2 10467 fin1a2lem6 10474 acncc 10509 fin41 10513 iunfo 10608 grutsk 10891 grothac 10899 grothtsk 10904 dfz2 12658 qexALT 13029 dfrp2 13456 om2uzrani 14003 hashkf 14381 divalglem4 16444 1nprm 16726 nsgacs 19202 oppgsubm 19405 oppgsubg 19406 oppgcntz 19407 pmtrprfvalrn 19530 opprsubg 20378 opprunit 20403 opprirred 20448 opprsubrng 20585 opprsubrg 20621 00lss 20962 dfprm2 21507 unocv 21721 iunocv 21722 00ply1bas 22262 toprntopon 22952 unisngl 23556 zcld 24854 iundisj 25602 plyun0 26256 aannenlem2 26389 eqid1 30499 choc0 31358 chocnul 31360 spanunsni 31611 lncnbd 32070 adjbd1o 32117 rnbra 32139 pjimai 32208 iunin1f 32580 iundisjf 32611 xrdifh 32785 iundisjfi 32801 opprnsg 33477 ccfldextdgrr 33682 cmpcref 33796 eulerpartgbij 34337 eulerpartlemr 34339 oddprm2 34632 dfdm5 35736 dfrn5 35737 dffix2 35869 fixcnv 35872 dfom5b 35876 fnimage 35893 brimg 35901 bj-csbsnlem 36869 bj-projun 36960 bj-pw0ALT 37015 bj-vjust 37021 finxp1o 37358 iundif1 37554 poimirlem26 37606 csbcom2fi 38088 prtlem16 38825 sn-iotalem 42214 aaitgo 43119 imaiun1 43613 grumnueq 44256 nzss 44286 dfodd2 47510 dfeven5 47540 dfodd7 47541 |
Copyright terms: Public domain | W3C validator |