Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqriv | Structured version Visualization version GIF version |
Description: Infer equality of classes from equivalence of membership. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
eqriv.1 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
Ref | Expression |
---|---|
eqriv | ⊢ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2731 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | eqriv.1 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) | |
3 | 1, 2 | mpgbir 1803 | 1 ⊢ 𝐴 = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2108 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 |
This theorem is referenced by: eqid 2738 cbvabv 2812 cbvabw 2813 cbvabwOLD 2814 cbvab 2815 vjust 3423 rabtru 3614 nfccdeq 3708 csbgfi 3849 difeqri 4055 uneqri 4081 incomOLD 4132 ineqri 4135 symdifass 4182 indifdi 4214 indifdirOLD 4216 undif3 4221 csbcom 4348 csbab 4368 dfopif 4797 pwpr 4830 pwtp 4831 pwv 4833 uniun 4861 int0 4890 intun 4908 intprOLD 4911 iuncom 4928 iuncom4 4929 iunin2 4996 iinun2 4998 iundif2 4999 iunun 5018 iunxun 5019 iunxiun 5022 iinpw 5031 inuni 5262 unipw 5360 xpiundi 5648 xpiundir 5649 iunxpf 5746 cnvuni 5784 dmiun 5811 dmuni 5812 idinxpres 5943 rniun 6040 xpdifid 6060 cnvresima 6122 imaco 6144 rnco 6145 dfmpt3 6551 imaiun 7100 unon 7653 opabex3d 7781 opabex3rd 7782 opabex3 7783 fparlem1 7923 fparlem2 7924 oarec 8355 ecid 8529 qsid 8530 mapval2 8618 ixpin 8669 onfin2 8945 unfilem1 9008 unifpw 9052 dfom5 9338 alephsuc2 9767 ackbij2 9930 isf33lem 10053 dffin7-2 10085 fin1a2lem6 10092 acncc 10127 fin41 10131 iunfo 10226 grutsk 10509 grothac 10517 grothtsk 10522 dfz2 12268 qexALT 12633 dfrp2 13057 om2uzrani 13600 hashkf 13974 divalglem4 16033 1nprm 16312 nsgacs 18705 oppgsubm 18884 oppgsubg 18885 oppgcntz 18886 pmtrprfvalrn 19011 opprsubg 19793 opprunit 19818 opprirred 19859 opprsubrg 19960 00lss 20118 dfprm2 20607 unocv 20797 iunocv 20798 00ply1bas 21321 toprntopon 21982 unisngl 22586 zcld 23882 iundisj 24617 plyun0 25263 aannenlem2 25394 eqid1 28732 choc0 29589 chocnul 29591 spanunsni 29842 lncnbd 30301 adjbd1o 30348 rnbra 30370 pjimai 30439 iunin1f 30798 iundisjf 30829 xrdifh 31003 iundisjfi 31019 ccfldextdgrr 31644 cmpcref 31702 eulerpartgbij 32239 eulerpartlemr 32241 oddprm2 32535 dfdm5 33653 dfrn5 33654 imaindm 33659 dffix2 34134 fixcnv 34137 dfom5b 34141 fnimage 34158 brimg 34166 bj-csbsnlem 35015 bj-projun 35111 bj-pw0ALT 35149 bj-vjust 35153 finxp1o 35490 iundif1 35678 poimirlem26 35730 csbcom2fi 36213 prtlem16 36810 sn-iotalem 40117 aaitgo 40903 imaiun1 41148 grumnueq 41794 nzss 41824 dfodd2 44976 dfeven5 45006 dfodd7 45007 |
Copyright terms: Public domain | W3C validator |