Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqriv | Structured version Visualization version GIF version |
Description: Infer equality of classes from equivalence of membership. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
eqriv.1 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
Ref | Expression |
---|---|
eqriv | ⊢ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2751 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | eqriv.1 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) | |
3 | 1, 2 | mpgbir 1801 | 1 ⊢ 𝐴 = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1538 ∈ wcel 2111 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-9 2121 ax-ext 2729 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1782 df-cleq 2750 |
This theorem is referenced by: eqid 2758 cbvabv 2826 cbvabw 2827 cbvabwOLD 2828 cbvab 2829 vjust 3410 rabtru 3601 nfccdeq 3694 csbgfi 3827 difeqri 4032 uneqri 4058 incomOLD 4109 ineqri 4110 symdifass 4158 indifdi 4190 indifdirOLD 4192 undif3 4197 csbcom 4317 csbab 4337 dfopif 4760 pwpr 4795 pwtp 4796 pwv 4798 uniun 4826 int0 4855 intun 4873 intprOLD 4876 iuncom 4893 iuncom4 4894 iunin2 4962 iinun2 4964 iundif2 4965 iunun 4984 iunxun 4985 iunxiun 4988 iinpw 4997 inuni 5217 unipw 5315 xpiundi 5596 xpiundir 5597 iunxpf 5694 cnvuni 5732 dmiun 5759 dmuni 5760 idinxpres 5891 epini 5936 rniun 5983 xpdifid 6002 cnvresima 6064 imaco 6086 rnco 6087 dfmpt3 6470 imaiun 7002 unon 7551 opabex3d 7676 opabex3rd 7677 opabex3 7678 fparlem1 7818 fparlem2 7819 oarec 8204 ecid 8378 qsid 8379 mapval2 8467 ixpin 8518 onfin2 8762 unfilem1 8828 unifpw 8873 dfom5 9159 alephsuc2 9553 ackbij2 9716 isf33lem 9839 dffin7-2 9871 fin1a2lem6 9878 acncc 9913 fin41 9917 iunfo 10012 grutsk 10295 grothac 10303 grothtsk 10308 dfz2 12052 qexALT 12417 dfrp2 12841 om2uzrani 13382 hashkf 13755 divalglem4 15810 1nprm 16089 nsgacs 18395 oppgsubm 18571 oppgsubg 18572 oppgcntz 18573 pmtrprfvalrn 18697 opprsubg 19471 opprunit 19496 opprirred 19537 opprsubrg 19638 00lss 19795 dfprm2 20277 unocv 20459 iunocv 20460 00ply1bas 20978 toprntopon 21639 unisngl 22241 zcld 23528 iundisj 24262 plyun0 24907 aannenlem2 25038 eqid1 28365 choc0 29222 chocnul 29224 spanunsni 29475 lncnbd 29934 adjbd1o 29981 rnbra 30003 pjimai 30072 iunin1f 30433 iundisjf 30464 xrdifh 30638 iundisjfi 30654 ccfldextdgrr 31276 cmpcref 31334 eulerpartgbij 31871 eulerpartlemr 31873 oddprm2 32167 dfdm5 33276 dfrn5 33277 imaindm 33282 dffix2 33791 fixcnv 33794 dfom5b 33798 fnimage 33815 brimg 33823 bj-csbsnlem 34659 bj-projun 34746 bj-pw0ALT 34783 bj-vjust 34787 finxp1o 35124 wl-dfrabv 35342 iundif1 35346 poimirlem26 35398 csbcom2fi 35881 prtlem16 36480 aaitgo 40524 imaiun1 40770 grumnueq 41413 nzss 41439 dfodd2 44580 dfeven5 44610 dfodd7 44611 |
Copyright terms: Public domain | W3C validator |