| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqriv | Structured version Visualization version GIF version | ||
| Description: Infer equality of classes from equivalence of membership. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| eqriv.1 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| eqriv | ⊢ 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2723 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | eqriv.1 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) | |
| 3 | 1, 2 | mpgbir 1799 | 1 ⊢ 𝐴 = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 |
| This theorem is referenced by: eqid 2730 cbvabv 2800 cbvabw 2801 cbvab 2802 vjust 3451 rabtru 3659 nfccdeq 3752 csbgfi 3885 difeqri 4094 uneqri 4122 ineqri 4178 symdifass 4228 indifdi 4260 undif3 4266 csbcom 4386 csbab 4406 pwpr 4868 pwtp 4869 pwv 4871 uniun 4897 int0 4929 intun 4947 iuncom 4966 iuncom4 4967 iunin2 5038 iinun2 5040 iundif2 5041 iunun 5060 iunxun 5061 iunxiun 5064 iinpw 5073 inuni 5308 unipw 5413 xpiundi 5712 xpiundir 5713 iunxpf 5815 cnvuni 5853 dmiun 5880 dmuni 5881 idinxpres 6021 rniun 6123 xpdifid 6144 cnvresima 6206 imaco 6227 rnco 6228 imaindm 6275 dfmpt3 6655 imaiun 7222 unon 7809 opabex3d 7947 opabex3rd 7948 opabex3 7949 fparlem1 8094 fparlem2 8095 oarec 8529 ecid 8756 qsid 8757 mapval2 8848 ixpin 8899 onfin2 9186 unfilem1 9261 unifpw 9313 dfom5 9610 alephsuc2 10040 ackbij2 10202 isf33lem 10326 dffin7-2 10358 fin1a2lem6 10365 acncc 10400 fin41 10404 iunfo 10499 grutsk 10782 grothac 10790 grothtsk 10795 dfz2 12555 qexALT 12930 dfrp2 13362 om2uzrani 13924 hashkf 14304 divalglem4 16373 1nprm 16656 nsgacs 19101 oppgsubm 19301 oppgsubg 19302 oppgcntz 19303 pmtrprfvalrn 19425 opprsubg 20268 opprunit 20293 opprirred 20338 opprsubrng 20475 opprsubrg 20509 00lss 20854 dfprm2 21390 unocv 21596 iunocv 21597 00ply1bas 22131 toprntopon 22819 unisngl 23421 zcld 24709 iundisj 25456 plyun0 26109 aannenlem2 26244 eqid1 30403 choc0 31262 chocnul 31264 spanunsni 31515 lncnbd 31974 adjbd1o 32021 rnbra 32043 pjimai 32112 iunin1f 32493 iundisjf 32525 xrdifh 32710 iundisjfi 32726 opprnsg 33462 ccfldextdgrr 33674 cmpcref 33847 eulerpartgbij 34370 eulerpartlemr 34372 oddprm2 34653 dfdm5 35767 dfrn5 35768 dffix2 35900 fixcnv 35903 dfom5b 35907 fnimage 35924 brimg 35932 bj-csbsnlem 36898 bj-projun 36989 bj-pw0ALT 37044 bj-vjust 37050 finxp1o 37387 iundif1 37595 poimirlem26 37647 csbcom2fi 38129 prtlem16 38869 sn-iotalem 42216 redvmptabs 42355 aaitgo 43158 imaiun1 43647 grumnueq 44283 nzss 44313 dfodd2 47641 dfeven5 47671 dfodd7 47672 ixpv 48882 isoval2 49028 oppcciceq 49045 oppczeroo 49230 dfinito4 49494 lmdfval2 49648 cmdfval2 49649 initocmd 49662 termolmd 49663 |
| Copyright terms: Public domain | W3C validator |