| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > eqriv | Structured version Visualization version GIF version | ||
| Description: Infer equality of classes from equivalence of membership. (Contributed by NM, 21-Jun-1993.) |
| Ref | Expression |
|---|---|
| eqriv.1 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| eqriv | ⊢ 𝐴 = 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfcleq 2722 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
| 2 | eqriv.1 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) | |
| 3 | 1, 2 | mpgbir 1799 | 1 ⊢ 𝐴 = 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∈ wcel 2109 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 |
| This theorem is referenced by: eqid 2729 cbvabv 2799 cbvabw 2800 cbvab 2801 vjust 3448 rabtru 3656 nfccdeq 3749 csbgfi 3882 difeqri 4091 uneqri 4119 ineqri 4175 symdifass 4225 indifdi 4257 undif3 4263 csbcom 4383 csbab 4403 pwpr 4865 pwtp 4866 pwv 4868 uniun 4894 int0 4926 intun 4944 iuncom 4963 iuncom4 4964 iunin2 5035 iinun2 5037 iundif2 5038 iunun 5057 iunxun 5058 iunxiun 5061 iinpw 5070 inuni 5305 unipw 5410 xpiundi 5709 xpiundir 5710 iunxpf 5812 cnvuni 5850 dmiun 5877 dmuni 5878 idinxpres 6018 rniun 6120 xpdifid 6141 cnvresima 6203 imaco 6224 rnco 6225 imaindm 6272 dfmpt3 6652 imaiun 7219 unon 7806 opabex3d 7944 opabex3rd 7945 opabex3 7946 fparlem1 8091 fparlem2 8092 oarec 8526 ecid 8753 qsid 8754 mapval2 8845 ixpin 8896 onfin2 9180 unfilem1 9254 unifpw 9306 dfom5 9603 alephsuc2 10033 ackbij2 10195 isf33lem 10319 dffin7-2 10351 fin1a2lem6 10358 acncc 10393 fin41 10397 iunfo 10492 grutsk 10775 grothac 10783 grothtsk 10788 dfz2 12548 qexALT 12923 dfrp2 13355 om2uzrani 13917 hashkf 14297 divalglem4 16366 1nprm 16649 nsgacs 19094 oppgsubm 19294 oppgsubg 19295 oppgcntz 19296 pmtrprfvalrn 19418 opprsubg 20261 opprunit 20286 opprirred 20331 opprsubrng 20468 opprsubrg 20502 00lss 20847 dfprm2 21383 unocv 21589 iunocv 21590 00ply1bas 22124 toprntopon 22812 unisngl 23414 zcld 24702 iundisj 25449 plyun0 26102 aannenlem2 26237 eqid1 30396 choc0 31255 chocnul 31257 spanunsni 31508 lncnbd 31967 adjbd1o 32014 rnbra 32036 pjimai 32105 iunin1f 32486 iundisjf 32518 xrdifh 32703 iundisjfi 32719 opprnsg 33455 ccfldextdgrr 33667 cmpcref 33840 eulerpartgbij 34363 eulerpartlemr 34365 oddprm2 34646 dfdm5 35760 dfrn5 35761 dffix2 35893 fixcnv 35896 dfom5b 35900 fnimage 35917 brimg 35925 bj-csbsnlem 36891 bj-projun 36982 bj-pw0ALT 37037 bj-vjust 37043 finxp1o 37380 iundif1 37588 poimirlem26 37640 csbcom2fi 38122 prtlem16 38862 sn-iotalem 42209 redvmptabs 42348 aaitgo 43151 imaiun1 43640 grumnueq 44276 nzss 44306 dfodd2 47637 dfeven5 47667 dfodd7 47668 ixpv 48878 isoval2 49024 oppcciceq 49041 oppczeroo 49226 dfinito4 49490 lmdfval2 49644 cmdfval2 49645 initocmd 49658 termolmd 49659 |
| Copyright terms: Public domain | W3C validator |