Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > eqriv | Structured version Visualization version GIF version |
Description: Infer equality of classes from equivalence of membership. (Contributed by NM, 21-Jun-1993.) |
Ref | Expression |
---|---|
eqriv.1 | ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
Ref | Expression |
---|---|
eqriv | ⊢ 𝐴 = 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfcleq 2732 | . 2 ⊢ (𝐴 = 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
2 | eqriv.1 | . 2 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) | |
3 | 1, 2 | mpgbir 1802 | 1 ⊢ 𝐴 = 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 = wceq 1539 ∈ wcel 2107 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2731 |
This theorem is referenced by: eqid 2739 cbvabv 2812 cbvabw 2813 cbvabwOLD 2814 cbvab 2815 vjust 3434 rabtru 3622 nfccdeq 3714 csbgfi 3854 difeqri 4060 uneqri 4086 ineqri 4139 symdifass 4186 indifdi 4218 indifdirOLD 4220 undif3 4225 csbcom 4352 csbab 4372 dfopif 4801 pwpr 4834 pwtp 4835 pwv 4837 uniun 4865 int0 4894 intun 4912 intprOLD 4915 iuncom 4932 iuncom4 4933 iunin2 5001 iinun2 5003 iundif2 5004 iunun 5023 iunxun 5024 iunxiun 5027 iinpw 5036 inuni 5268 unipw 5367 xpiundi 5658 xpiundir 5659 iunxpf 5760 cnvuni 5798 dmiun 5825 dmuni 5826 idinxpres 5957 rniun 6056 xpdifid 6076 cnvresima 6138 imaco 6159 rnco 6160 dfmpt3 6576 imaiun 7127 unon 7687 opabex3d 7817 opabex3rd 7818 opabex3 7819 fparlem1 7961 fparlem2 7962 oarec 8402 ecid 8580 qsid 8581 mapval2 8669 ixpin 8720 onfin2 9023 unfilem1 9087 unifpw 9131 dfom5 9417 alephsuc2 9845 ackbij2 10008 isf33lem 10131 dffin7-2 10163 fin1a2lem6 10170 acncc 10205 fin41 10209 iunfo 10304 grutsk 10587 grothac 10595 grothtsk 10600 dfz2 12347 qexALT 12713 dfrp2 13137 om2uzrani 13681 hashkf 14055 divalglem4 16114 1nprm 16393 nsgacs 18799 oppgsubm 18978 oppgsubg 18979 oppgcntz 18980 pmtrprfvalrn 19105 opprsubg 19887 opprunit 19912 opprirred 19953 opprsubrg 20054 00lss 20212 dfprm2 20704 unocv 20894 iunocv 20895 00ply1bas 21420 toprntopon 22083 unisngl 22687 zcld 23985 iundisj 24721 plyun0 25367 aannenlem2 25498 eqid1 28840 choc0 29697 chocnul 29699 spanunsni 29950 lncnbd 30409 adjbd1o 30456 rnbra 30478 pjimai 30547 iunin1f 30906 iundisjf 30937 xrdifh 31110 iundisjfi 31126 ccfldextdgrr 31751 cmpcref 31809 eulerpartgbij 32348 eulerpartlemr 32350 oddprm2 32644 dfdm5 33756 dfrn5 33757 imaindm 33762 dffix2 34216 fixcnv 34219 dfom5b 34223 fnimage 34240 brimg 34248 bj-csbsnlem 35097 bj-projun 35193 bj-pw0ALT 35231 bj-vjust 35235 finxp1o 35572 iundif1 35760 poimirlem26 35812 csbcom2fi 36295 prtlem16 36890 sn-iotalem 40196 aaitgo 40994 imaiun1 41266 grumnueq 41912 nzss 41942 dfodd2 45099 dfeven5 45129 dfodd7 45130 |
Copyright terms: Public domain | W3C validator |