![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > equidq | Structured version Visualization version GIF version |
Description: equid 2008 with universal quantifier without using ax-c5 38355 or ax-5 1906. (Contributed by NM, 13-Jan-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
equidq | ⊢ ∀𝑦 𝑥 = 𝑥 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equidqe 38394 | . 2 ⊢ ¬ ∀𝑦 ¬ 𝑥 = 𝑥 | |
2 | ax10fromc7 38367 | . . 3 ⊢ (¬ ∀𝑦 𝑥 = 𝑥 → ∀𝑦 ¬ ∀𝑦 𝑥 = 𝑥) | |
3 | hbequid 38381 | . . . 4 ⊢ (𝑥 = 𝑥 → ∀𝑦 𝑥 = 𝑥) | |
4 | 3 | con3i 154 | . . 3 ⊢ (¬ ∀𝑦 𝑥 = 𝑥 → ¬ 𝑥 = 𝑥) |
5 | 2, 4 | alrimih 1819 | . 2 ⊢ (¬ ∀𝑦 𝑥 = 𝑥 → ∀𝑦 ¬ 𝑥 = 𝑥) |
6 | 1, 5 | mt3 200 | 1 ⊢ ∀𝑦 𝑥 = 𝑥 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∀wal 1532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-c5 38355 ax-c4 38356 ax-c7 38357 ax-c10 38358 ax-c9 38362 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1775 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |