MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exdistr2 Structured version   Visualization version   GIF version

Theorem exdistr2 1963
Description: Distribution of existential quantifiers. (Contributed by NM, 17-Mar-1995.)
Assertion
Ref Expression
exdistr2 (∃𝑥𝑦𝑧(𝜑𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝑧𝜓))
Distinct variable groups:   𝜑,𝑦   𝜑,𝑧
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem exdistr2
StepHypRef Expression
1 19.42vv 1962 . 2 (∃𝑦𝑧(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑦𝑧𝜓))
21exbii 1851 1 (∃𝑥𝑦𝑧(𝜑𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝑧𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784
This theorem is referenced by:  19.42vvv  1964
  Copyright terms: Public domain W3C validator