|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > exdistr2 | Structured version Visualization version GIF version | ||
| Description: Distribution of existential quantifiers. (Contributed by NM, 17-Mar-1995.) | 
| Ref | Expression | 
|---|---|
| exdistr2 | ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦∃𝑧𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 19.42vv 1957 | . 2 ⊢ (∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑦∃𝑧𝜓)) | |
| 2 | 1 | exbii 1848 | 1 ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦∃𝑧𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 | 
| This theorem is referenced by: 19.42vvv 1959 | 
| Copyright terms: Public domain | W3C validator |