Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.42vv | Structured version Visualization version GIF version |
Description: Version of 19.42 2228 with two quantifiers and a disjoint variable condition requiring fewer axioms. (Contributed by NM, 16-Mar-1995.) |
Ref | Expression |
---|---|
19.42vv | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥∃𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exdistr 1957 | . 2 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) | |
2 | 19.42v 1956 | . 2 ⊢ (∃𝑥(𝜑 ∧ ∃𝑦𝜓) ↔ (𝜑 ∧ ∃𝑥∃𝑦𝜓)) | |
3 | 1, 2 | bitri 274 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥∃𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1781 |
This theorem is referenced by: exdistr2 1961 3exdistr 1963 ceqsex3v 3493 ceqsex4v 3494 ceqsex8v 3496 elvvv 5687 xpdifid 6100 dfoprab2 7387 resoprab 7446 elrnmpores 7465 ov3 7489 ov6g 7490 oprabex3 7880 xpassen 8923 entrfil 9045 domtrfil 9052 sbthfilem 9058 axaddf 10994 axmulf 10995 catcone0 17485 qqhval2 32171 bnj996 33176 fineqvac 33306 inxpxrn 36655 dvhopellsm 39378 |
Copyright terms: Public domain | W3C validator |