MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.42vv Structured version   Visualization version   GIF version

Theorem 19.42vv 1962
Description: Version of 19.42 2230 with two quantifiers and a disjoint variable condition requiring fewer axioms. (Contributed by NM, 16-Mar-1995.)
Assertion
Ref Expression
19.42vv (∃𝑥𝑦(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝑦𝜓))
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)

Proof of Theorem 19.42vv
StepHypRef Expression
1 exdistr 1959 . 2 (∃𝑥𝑦(𝜑𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓))
2 19.42v 1958 . 2 (∃𝑥(𝜑 ∧ ∃𝑦𝜓) ↔ (𝜑 ∧ ∃𝑥𝑦𝜓))
31, 2bitri 274 1 (∃𝑥𝑦(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783
This theorem is referenced by:  exdistr2  1963  3exdistr  1965  ceqsex3v  3485  ceqsex4v  3486  ceqsex8v  3488  elvvv  5663  xpdifid  6076  dfoprab2  7342  resoprab  7401  elrnmpores  7420  ov3  7444  ov6g  7445  oprabex3  7829  xpassen  8862  entrfil  8980  domtrfil  8987  sbthfilem  8993  axaddf  10910  axmulf  10911  catcone0  17405  qqhval2  31941  bnj996  32945  fineqvac  33075  inxpxrn  36528  dvhopellsm  39138
  Copyright terms: Public domain W3C validator