| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.42vv | Structured version Visualization version GIF version | ||
| Description: Version of 19.42 2241 with two quantifiers and a disjoint variable condition requiring fewer axioms. (Contributed by NM, 16-Mar-1995.) |
| Ref | Expression |
|---|---|
| 19.42vv | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥∃𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exdistr 1955 | . 2 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) | |
| 2 | 19.42v 1954 | . 2 ⊢ (∃𝑥(𝜑 ∧ ∃𝑦𝜓) ↔ (𝜑 ∧ ∃𝑥∃𝑦𝜓)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥∃𝑦𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 |
| This theorem is referenced by: exdistr2 1959 3exdistr 1961 cgsex4g 3484 ceqsex3v 3492 ceqsex4v 3493 ceqsex8v 3495 elvvv 5697 xpdifid 6123 dfoprab2 7413 resoprab 7473 elrnmpores 7493 ov3 7518 ov6g 7519 oprabex3 7918 xpassen 8995 entrfil 9105 domtrfil 9112 sbthfilem 9118 axaddf 11047 axmulf 11048 catcone0 17601 qqhval2 34067 bnj996 35040 fineqvac 35211 inxpxrn 38515 dmqsblocks 39024 dvhopellsm 41289 |
| Copyright terms: Public domain | W3C validator |