Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.42vv | Structured version Visualization version GIF version |
Description: Version of 19.42 2232 with two quantifiers and a disjoint variable condition requiring fewer axioms. (Contributed by NM, 16-Mar-1995.) |
Ref | Expression |
---|---|
19.42vv | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥∃𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exdistr 1959 | . 2 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) | |
2 | 19.42v 1958 | . 2 ⊢ (∃𝑥(𝜑 ∧ ∃𝑦𝜓) ↔ (𝜑 ∧ ∃𝑥∃𝑦𝜓)) | |
3 | 1, 2 | bitri 274 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥∃𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 |
This theorem is referenced by: exdistr2 1963 3exdistr 1965 ceqsex3v 3474 ceqsex4v 3475 ceqsex8v 3477 elvvv 5653 xpdifid 6060 dfoprab2 7311 resoprab 7370 elrnmpores 7389 ov3 7413 ov6g 7414 oprabex3 7793 xpassen 8806 entrfil 8931 domtrfi 8938 sbthfilem 8941 axaddf 10832 axmulf 10833 catcone0 17313 qqhval2 31832 bnj996 32836 fineqvac 32966 inxpxrn 36448 dvhopellsm 39058 |
Copyright terms: Public domain | W3C validator |