Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.42vv | Structured version Visualization version GIF version |
Description: Version of 19.42 2230 with two quantifiers and a disjoint variable condition requiring fewer axioms. (Contributed by NM, 16-Mar-1995.) |
Ref | Expression |
---|---|
19.42vv | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥∃𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exdistr 1959 | . 2 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) | |
2 | 19.42v 1958 | . 2 ⊢ (∃𝑥(𝜑 ∧ ∃𝑦𝜓) ↔ (𝜑 ∧ ∃𝑥∃𝑦𝜓)) | |
3 | 1, 2 | bitri 274 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥∃𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 |
This theorem is referenced by: exdistr2 1963 3exdistr 1965 ceqsex3v 3485 ceqsex4v 3486 ceqsex8v 3488 elvvv 5663 xpdifid 6076 dfoprab2 7342 resoprab 7401 elrnmpores 7420 ov3 7444 ov6g 7445 oprabex3 7829 xpassen 8862 entrfil 8980 domtrfil 8987 sbthfilem 8993 axaddf 10910 axmulf 10911 catcone0 17405 qqhval2 31941 bnj996 32945 fineqvac 33075 inxpxrn 36528 dvhopellsm 39138 |
Copyright terms: Public domain | W3C validator |