| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.42vv | Structured version Visualization version GIF version | ||
| Description: Version of 19.42 2237 with two quantifiers and a disjoint variable condition requiring fewer axioms. (Contributed by NM, 16-Mar-1995.) |
| Ref | Expression |
|---|---|
| 19.42vv | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥∃𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exdistr 1954 | . 2 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) | |
| 2 | 19.42v 1953 | . 2 ⊢ (∃𝑥(𝜑 ∧ ∃𝑦𝜓) ↔ (𝜑 ∧ ∃𝑥∃𝑦𝜓)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥∃𝑦𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: exdistr2 1958 3exdistr 1960 cgsex4g 3485 ceqsex3v 3494 ceqsex4v 3495 ceqsex8v 3497 elvvv 5699 xpdifid 6121 dfoprab2 7411 resoprab 7471 elrnmpores 7491 ov3 7516 ov6g 7517 oprabex3 7919 xpassen 8995 entrfil 9109 domtrfil 9116 sbthfilem 9122 axaddf 11058 axmulf 11059 catcone0 17612 qqhval2 33968 bnj996 34942 fineqvac 35091 inxpxrn 38386 dmqsblocks 38850 dvhopellsm 41116 |
| Copyright terms: Public domain | W3C validator |