| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 19.42vv | Structured version Visualization version GIF version | ||
| Description: Version of 19.42 2237 with two quantifiers and a disjoint variable condition requiring fewer axioms. (Contributed by NM, 16-Mar-1995.) |
| Ref | Expression |
|---|---|
| 19.42vv | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥∃𝑦𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exdistr 1954 | . 2 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) | |
| 2 | 19.42v 1953 | . 2 ⊢ (∃𝑥(𝜑 ∧ ∃𝑦𝜓) ↔ (𝜑 ∧ ∃𝑥∃𝑦𝜓)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥∃𝑦𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: exdistr2 1958 3exdistr 1960 cgsex4g 3497 ceqsex3v 3506 ceqsex4v 3507 ceqsex8v 3509 elvvv 5717 xpdifid 6144 dfoprab2 7450 resoprab 7510 elrnmpores 7530 ov3 7555 ov6g 7556 oprabex3 7959 xpassen 9040 entrfil 9155 domtrfil 9162 sbthfilem 9168 axaddf 11105 axmulf 11106 catcone0 17655 qqhval2 33979 bnj996 34953 fineqvac 35094 inxpxrn 38388 dmqsblocks 38852 dvhopellsm 41118 |
| Copyright terms: Public domain | W3C validator |