MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.42vv Structured version   Visualization version   GIF version

Theorem 19.42vv 1957
Description: Version of 19.42 2237 with two quantifiers and a disjoint variable condition requiring fewer axioms. (Contributed by NM, 16-Mar-1995.)
Assertion
Ref Expression
19.42vv (∃𝑥𝑦(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝑦𝜓))
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)

Proof of Theorem 19.42vv
StepHypRef Expression
1 exdistr 1954 . 2 (∃𝑥𝑦(𝜑𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓))
2 19.42v 1953 . 2 (∃𝑥(𝜑 ∧ ∃𝑦𝜓) ↔ (𝜑 ∧ ∃𝑥𝑦𝜓))
31, 2bitri 275 1 (∃𝑥𝑦(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780
This theorem is referenced by:  exdistr2  1958  3exdistr  1960  cgsex4g  3494  ceqsex3v  3503  ceqsex4v  3504  ceqsex8v  3506  elvvv  5714  xpdifid  6141  dfoprab2  7447  resoprab  7507  elrnmpores  7527  ov3  7552  ov6g  7553  oprabex3  7956  xpassen  9035  entrfil  9149  domtrfil  9156  sbthfilem  9162  axaddf  11098  axmulf  11099  catcone0  17648  qqhval2  33972  bnj996  34946  fineqvac  35087  inxpxrn  38381  dmqsblocks  38845  dvhopellsm  41111
  Copyright terms: Public domain W3C validator