MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.42vv Structured version   Visualization version   GIF version

Theorem 19.42vv 1957
Description: Version of 19.42 2237 with two quantifiers and a disjoint variable condition requiring fewer axioms. (Contributed by NM, 16-Mar-1995.)
Assertion
Ref Expression
19.42vv (∃𝑥𝑦(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝑦𝜓))
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)

Proof of Theorem 19.42vv
StepHypRef Expression
1 exdistr 1954 . 2 (∃𝑥𝑦(𝜑𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓))
2 19.42v 1953 . 2 (∃𝑥(𝜑 ∧ ∃𝑦𝜓) ↔ (𝜑 ∧ ∃𝑥𝑦𝜓))
31, 2bitri 275 1 (∃𝑥𝑦(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780
This theorem is referenced by:  exdistr2  1958  3exdistr  1960  cgsex4g  3497  ceqsex3v  3506  ceqsex4v  3507  ceqsex8v  3509  elvvv  5717  xpdifid  6144  dfoprab2  7450  resoprab  7510  elrnmpores  7530  ov3  7555  ov6g  7556  oprabex3  7959  xpassen  9040  entrfil  9155  domtrfil  9162  sbthfilem  9168  axaddf  11105  axmulf  11106  catcone0  17655  qqhval2  33979  bnj996  34953  fineqvac  35094  inxpxrn  38388  dmqsblocks  38852  dvhopellsm  41118
  Copyright terms: Public domain W3C validator