![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 19.42vv | Structured version Visualization version GIF version |
Description: Version of 19.42 2237 with two quantifiers and a disjoint variable condition requiring fewer axioms. (Contributed by NM, 16-Mar-1995.) |
Ref | Expression |
---|---|
19.42vv | ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥∃𝑦𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exdistr 1954 | . 2 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) | |
2 | 19.42v 1953 | . 2 ⊢ (∃𝑥(𝜑 ∧ ∃𝑦𝜓) ↔ (𝜑 ∧ ∃𝑥∃𝑦𝜓)) | |
3 | 1, 2 | bitri 275 | 1 ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥∃𝑦𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 |
This theorem is referenced by: exdistr2 1958 3exdistr 1960 cgsex4g 3538 ceqsex3v 3549 ceqsex4v 3550 ceqsex8v 3552 elvvv 5775 xpdifid 6199 dfoprab2 7508 resoprab 7568 elrnmpores 7588 ov3 7613 ov6g 7614 oprabex3 8018 xpassen 9132 entrfil 9251 domtrfil 9258 sbthfilem 9264 axaddf 11214 axmulf 11215 catcone0 17745 qqhval2 33928 bnj996 34932 fineqvac 35073 inxpxrn 38351 dvhopellsm 41074 |
Copyright terms: Public domain | W3C validator |