MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.42vv Structured version   Visualization version   GIF version

Theorem 19.42vv 1962
Description: Version of 19.42 2230 with two quantifiers and a disjoint variable condition requiring fewer axioms. (Contributed by NM, 16-Mar-1995.)
Assertion
Ref Expression
19.42vv (∃𝑥𝑦(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝑦𝜓))
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜓(𝑥,𝑦)

Proof of Theorem 19.42vv
StepHypRef Expression
1 exdistr 1959 . 2 (∃𝑥𝑦(𝜑𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝜓))
2 19.42v 1958 . 2 (∃𝑥(𝜑 ∧ ∃𝑦𝜓) ↔ (𝜑 ∧ ∃𝑥𝑦𝜓))
31, 2bitri 275 1 (∃𝑥𝑦(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝑦𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1783
This theorem is referenced by:  exdistr2  1963  3exdistr  1965  cgsex4g  3521  ceqsex3v  3532  ceqsex4v  3533  ceqsex8v  3535  elvvv  5752  xpdifid  6168  dfoprab2  7467  resoprab  7526  elrnmpores  7546  ov3  7570  ov6g  7571  oprabex3  7964  xpassen  9066  entrfil  9188  domtrfil  9195  sbthfilem  9201  axaddf  11140  axmulf  11141  catcone0  17631  qqhval2  32962  bnj996  33967  fineqvac  34097  inxpxrn  37265  dvhopellsm  39988
  Copyright terms: Public domain W3C validator