Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 19.42vvv | Structured version Visualization version GIF version |
Description: Version of 19.42 2232 with three quantifiers and a disjoint variable condition requiring fewer axioms. (Contributed by NM, 21-Sep-2011.) (Proof shortened by Wolf Lammen, 27-Aug-2023.) |
Ref | Expression |
---|---|
19.42vvv | ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥∃𝑦∃𝑧𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exdistr2 1963 | . 2 ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦∃𝑧𝜓)) | |
2 | 19.42v 1958 | . 2 ⊢ (∃𝑥(𝜑 ∧ ∃𝑦∃𝑧𝜓) ↔ (𝜑 ∧ ∃𝑥∃𝑦∃𝑧𝜓)) | |
3 | 1, 2 | bitri 274 | 1 ⊢ (∃𝑥∃𝑦∃𝑧(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥∃𝑦∃𝑧𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∃wex 1783 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 |
This theorem is referenced by: ceqsex6v 3476 |
Copyright terms: Public domain | W3C validator |