MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  19.42vvv Structured version   Visualization version   GIF version

Theorem 19.42vvv 1964
Description: Version of 19.42 2232 with three quantifiers and a disjoint variable condition requiring fewer axioms. (Contributed by NM, 21-Sep-2011.) (Proof shortened by Wolf Lammen, 27-Aug-2023.)
Assertion
Ref Expression
19.42vvv (∃𝑥𝑦𝑧(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝑦𝑧𝜓))
Distinct variable groups:   𝜑,𝑥   𝜑,𝑦   𝜑,𝑧
Allowed substitution hints:   𝜓(𝑥,𝑦,𝑧)

Proof of Theorem 19.42vvv
StepHypRef Expression
1 exdistr2 1963 . 2 (∃𝑥𝑦𝑧(𝜑𝜓) ↔ ∃𝑥(𝜑 ∧ ∃𝑦𝑧𝜓))
2 19.42v 1958 . 2 (∃𝑥(𝜑 ∧ ∃𝑦𝑧𝜓) ↔ (𝜑 ∧ ∃𝑥𝑦𝑧𝜓))
31, 2bitri 274 1 (∃𝑥𝑦𝑧(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝑦𝑧𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784
This theorem is referenced by:  ceqsex6v  3476
  Copyright terms: Public domain W3C validator