MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ferison Structured version   Visualization version   GIF version

Theorem ferison 2683
Description: "Ferison", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓, and some 𝜑 is 𝜒, therefore some 𝜒 is not 𝜓. Instance of datisi 2681. In Aristotelian notation, EIO-3: MeP and MiS therefore SoP. (Contributed by David A. Wheeler, 28-Aug-2016.)
Hypotheses
Ref Expression
ferison.maj 𝑥(𝜑 → ¬ 𝜓)
ferison.min 𝑥(𝜑𝜒)
Assertion
Ref Expression
ferison 𝑥(𝜒 ∧ ¬ 𝜓)

Proof of Theorem ferison
StepHypRef Expression
1 ferison.maj . 2 𝑥(𝜑 → ¬ 𝜓)
2 ferison.min . 2 𝑥(𝜑𝜒)
31, 2datisi 2681 1 𝑥(𝜒 ∧ ¬ 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wal 1537  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator