| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > datisi | Structured version Visualization version GIF version | ||
| Description: "Datisi", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, and some 𝜑 is 𝜒, therefore some 𝜒 is 𝜓. In Aristotelian notation, AII-3: MaP and MiS therefore SiP. (Contributed by David A. Wheeler, 28-Aug-2016.) Shorten and reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022.) |
| Ref | Expression |
|---|---|
| datisi.maj | ⊢ ∀𝑥(𝜑 → 𝜓) |
| datisi.min | ⊢ ∃𝑥(𝜑 ∧ 𝜒) |
| Ref | Expression |
|---|---|
| datisi | ⊢ ∃𝑥(𝜒 ∧ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | datisi.maj | . 2 ⊢ ∀𝑥(𝜑 → 𝜓) | |
| 2 | datisi.min | . . 3 ⊢ ∃𝑥(𝜑 ∧ 𝜒) | |
| 3 | exancom 1861 | . . 3 ⊢ (∃𝑥(𝜑 ∧ 𝜒) ↔ ∃𝑥(𝜒 ∧ 𝜑)) | |
| 4 | 2, 3 | mpbi 230 | . 2 ⊢ ∃𝑥(𝜒 ∧ 𝜑) |
| 5 | 1, 4 | darii 2665 | 1 ⊢ ∃𝑥(𝜒 ∧ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: disamis 2681 ferison 2682 |
| Copyright terms: Public domain | W3C validator |