|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > disamis | Structured version Visualization version GIF version | ||
| Description: "Disamis", one of the syllogisms of Aristotelian logic. Some 𝜑 is 𝜓, and all 𝜑 is 𝜒, therefore some 𝜒 is 𝜓. In Aristotelian notation, IAI-3: MiP and MaS therefore SiP. (Contributed by David A. Wheeler, 28-Aug-2016.) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022.) | 
| Ref | Expression | 
|---|---|
| disamis.maj | ⊢ ∃𝑥(𝜑 ∧ 𝜓) | 
| disamis.min | ⊢ ∀𝑥(𝜑 → 𝜒) | 
| Ref | Expression | 
|---|---|
| disamis | ⊢ ∃𝑥(𝜒 ∧ 𝜓) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | disamis.min | . . 3 ⊢ ∀𝑥(𝜑 → 𝜒) | |
| 2 | disamis.maj | . . 3 ⊢ ∃𝑥(𝜑 ∧ 𝜓) | |
| 3 | 1, 2 | datisi 2680 | . 2 ⊢ ∃𝑥(𝜓 ∧ 𝜒) | 
| 4 | exancom 1861 | . 2 ⊢ (∃𝑥(𝜓 ∧ 𝜒) ↔ ∃𝑥(𝜒 ∧ 𝜓)) | |
| 5 | 3, 4 | mpbi 230 | 1 ⊢ ∃𝑥(𝜒 ∧ 𝜓) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1538 ∃wex 1779 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 | 
| This theorem is referenced by: bocardo 2683 | 
| Copyright terms: Public domain | W3C validator |