Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > disamis | Structured version Visualization version GIF version |
Description: "Disamis", one of the syllogisms of Aristotelian logic. Some 𝜑 is 𝜓, and all 𝜑 is 𝜒, therefore some 𝜒 is 𝜓. In Aristotelian notation, IAI-3: MiP and MaS therefore SiP. (Contributed by David A. Wheeler, 28-Aug-2016.) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022.) |
Ref | Expression |
---|---|
disamis.maj | ⊢ ∃𝑥(𝜑 ∧ 𝜓) |
disamis.min | ⊢ ∀𝑥(𝜑 → 𝜒) |
Ref | Expression |
---|---|
disamis | ⊢ ∃𝑥(𝜒 ∧ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disamis.min | . . 3 ⊢ ∀𝑥(𝜑 → 𝜒) | |
2 | disamis.maj | . . 3 ⊢ ∃𝑥(𝜑 ∧ 𝜓) | |
3 | 1, 2 | datisi 2681 | . 2 ⊢ ∃𝑥(𝜓 ∧ 𝜒) |
4 | exancom 1864 | . 2 ⊢ (∃𝑥(𝜓 ∧ 𝜒) ↔ ∃𝑥(𝜒 ∧ 𝜓)) | |
5 | 3, 4 | mpbi 229 | 1 ⊢ ∃𝑥(𝜒 ∧ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 |
This theorem is referenced by: bocardo 2684 |
Copyright terms: Public domain | W3C validator |