Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege52b Structured version   Visualization version   GIF version

Theorem frege52b 41359
Description: The case when the content of 𝑥 is identical with the content of 𝑦 and in which a proposition controlled by an element for which we substitute the content of 𝑥 is affirmed and the same proposition, this time where we substitute the content of 𝑦, is denied does not take place. In [𝑥 / 𝑧]𝜑, 𝑥 can also occur in other than the argument (𝑧) places. Hence 𝑥 may still be contained in [𝑦 / 𝑧]𝜑. Part of Axiom 52 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
frege52b (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑))

Proof of Theorem frege52b
StepHypRef Expression
1 ax-frege52c 41358 . 2 (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑[𝑦 / 𝑧]𝜑))
2 sbsbc 3716 . 2 ([𝑥 / 𝑧]𝜑[𝑥 / 𝑧]𝜑)
3 sbsbc 3716 . 2 ([𝑦 / 𝑧]𝜑[𝑦 / 𝑧]𝜑)
41, 2, 33imtr4g 299 1 (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  [wsb 2072  [wsbc 3712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-ext 2710  ax-frege52c 41358
This theorem depends on definitions:  df-bi 210  df-an 400  df-ex 1788  df-clab 2717  df-cleq 2731  df-clel 2818  df-sbc 3713
This theorem is referenced by:  frege53b  41360  frege57b  41369
  Copyright terms: Public domain W3C validator