| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbsbc | Structured version Visualization version GIF version | ||
| Description: Show that df-sb 2066 and df-sbc 3754 are equivalent when the class term 𝐴 in df-sbc 3754 is a setvar variable. This theorem lets us reuse theorems based on df-sb 2066 for proofs involving df-sbc 3754. (Contributed by NM, 31-Dec-2016.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| sbsbc | ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ 𝑦 = 𝑦 | |
| 2 | dfsbcq2 3756 | . 2 ⊢ (𝑦 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 [wsb 2065 [wsbc 3753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clab 2708 df-cleq 2721 df-clel 2803 df-sbc 3754 |
| This theorem is referenced by: spsbc 3766 sbcid 3770 sbccow 3776 sbcco 3779 sbcco2 3780 sbcie2g 3794 eqsbc1 3800 sbcralt 3835 cbvralcsf 3904 cbvreucsf 3906 cbvrabcsf 3907 sbnfc2 4402 csbab 4403 csbie2df 4406 2nreu 4407 frpoins2fg 6317 isarep1OLD 6607 tfindes 7839 tfinds2 7840 frins2f 9706 iuninc 32489 suppss2f 32562 fmptdF 32580 disjdsct 32626 esumpfinvalf 34066 measiuns 34207 bnj580 34903 bnj985v 34943 bnj985 34944 xpab 35713 setinds2f 35767 bj-sbeq 36889 bj-sbel1 36893 bj-snsetex 36951 poimirlem25 37639 poimirlem26 37640 fdc1 37740 exlimddvfi 38116 frege52b 43878 frege58c 43910 pm13.194 44401 pm14.12 44410 sbiota1 44423 onfrALTlem1 44538 onfrALTlem1VD 44879 disjinfi 45186 ellimcabssub0 45615 2reu8i 47111 ich2exprop 47469 ichnreuop 47470 ichreuopeq 47471 |
| Copyright terms: Public domain | W3C validator |