![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbsbc | Structured version Visualization version GIF version |
Description: Show that df-sb 2063 and df-sbc 3792 are equivalent when the class term 𝐴 in df-sbc 3792 is a setvar variable. This theorem lets us reuse theorems based on df-sb 2063 for proofs involving df-sbc 3792. (Contributed by NM, 31-Dec-2016.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
sbsbc | ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2735 | . 2 ⊢ 𝑦 = 𝑦 | |
2 | dfsbcq2 3794 | . 2 ⊢ (𝑦 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 [wsb 2062 [wsbc 3791 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-clab 2713 df-cleq 2727 df-clel 2814 df-sbc 3792 |
This theorem is referenced by: spsbc 3804 sbcid 3808 sbccow 3814 sbcco 3817 sbcco2 3818 sbcie2g 3834 eqsbc1 3841 sbcralt 3881 cbvralcsf 3953 cbvreucsf 3955 cbvrabcsf 3956 sbnfc2 4445 csbab 4446 csbie2df 4449 2nreu 4450 frpoins2fg 6367 wfis2fgOLD 6380 isarep1OLD 6658 tfindes 7884 tfinds2 7885 frins2f 9791 iuninc 32581 suppss2f 32655 fmptdF 32673 disjdsct 32718 esumpfinvalf 34057 measiuns 34198 bnj580 34906 bnj985v 34946 bnj985 34947 xpab 35706 setinds2f 35761 bj-sbeq 36884 bj-sbel1 36888 bj-snsetex 36946 poimirlem25 37632 poimirlem26 37633 fdc1 37733 exlimddvfi 38109 frege52b 43879 frege58c 43911 pm13.194 44408 pm14.12 44417 sbiota1 44430 onfrALTlem1 44546 onfrALTlem1VD 44888 disjinfi 45135 ellimcabssub0 45573 2reu8i 47063 ich2exprop 47396 ichnreuop 47397 ichreuopeq 47398 |
Copyright terms: Public domain | W3C validator |