Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > sbsbc | Structured version Visualization version GIF version |
Description: Show that df-sb 2069 and df-sbc 3712 are equivalent when the class term 𝐴 in df-sbc 3712 is a setvar variable. This theorem lets us reuse theorems based on df-sb 2069 for proofs involving df-sbc 3712. (Contributed by NM, 31-Dec-2016.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
sbsbc | ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ 𝑦 = 𝑦 | |
2 | dfsbcq2 3714 | . 2 ⊢ (𝑦 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 [wsb 2068 [wsbc 3711 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-clab 2716 df-cleq 2730 df-clel 2817 df-sbc 3712 |
This theorem is referenced by: spsbc 3724 sbcid 3728 sbccow 3734 sbcco 3737 sbcco2 3738 sbcie2g 3753 eqsbc1 3760 sbcralt 3801 cbvralcsf 3873 cbvreucsf 3875 cbvrabcsf 3876 sbnfc2 4367 csbab 4368 csbie2df 4371 2nreu 4372 frpoins2fg 6232 wfis2fgOLD 6245 isarep1 6506 tfindes 7684 tfinds2 7685 frins2f 9442 iuninc 30801 suppss2f 30875 fmptdF 30895 disjdsct 30937 esumpfinvalf 31944 measiuns 32085 bnj580 32793 bnj985v 32833 bnj985 32834 xpab 33579 setinds2f 33661 bj-sbeq 35013 bj-sbel1 35017 bj-snsetex 35080 poimirlem25 35729 poimirlem26 35730 fdc1 35831 exlimddvfi 36207 frege52b 41386 frege58c 41418 pm13.194 41919 pm14.12 41928 sbiota1 41941 onfrALTlem1 42057 onfrALTlem1VD 42399 disjinfi 42620 ellimcabssub0 43048 2reu8i 44492 ich2exprop 44811 ichnreuop 44812 ichreuopeq 44813 |
Copyright terms: Public domain | W3C validator |