![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbsbc | Structured version Visualization version GIF version |
Description: Show that df-sb 2065 and df-sbc 3805 are equivalent when the class term 𝐴 in df-sbc 3805 is a setvar variable. This theorem lets us reuse theorems based on df-sb 2065 for proofs involving df-sbc 3805. (Contributed by NM, 31-Dec-2016.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
sbsbc | ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . 2 ⊢ 𝑦 = 𝑦 | |
2 | dfsbcq2 3807 | . 2 ⊢ (𝑦 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 [wsb 2064 [wsbc 3804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-clab 2718 df-cleq 2732 df-clel 2819 df-sbc 3805 |
This theorem is referenced by: spsbc 3817 sbcid 3821 sbccow 3827 sbcco 3830 sbcco2 3831 sbcie2g 3847 eqsbc1 3854 sbcralt 3894 cbvralcsf 3966 cbvreucsf 3968 cbvrabcsf 3969 sbnfc2 4462 csbab 4463 csbie2df 4466 2nreu 4467 frpoins2fg 6376 wfis2fgOLD 6389 isarep1OLD 6668 tfindes 7900 tfinds2 7901 frins2f 9822 iuninc 32583 suppss2f 32657 fmptdF 32674 disjdsct 32714 esumpfinvalf 34040 measiuns 34181 bnj580 34889 bnj985v 34929 bnj985 34930 xpab 35688 setinds2f 35743 bj-sbeq 36867 bj-sbel1 36871 bj-snsetex 36929 poimirlem25 37605 poimirlem26 37606 fdc1 37706 exlimddvfi 38082 frege52b 43851 frege58c 43883 pm13.194 44381 pm14.12 44390 sbiota1 44403 onfrALTlem1 44519 onfrALTlem1VD 44861 disjinfi 45099 ellimcabssub0 45538 2reu8i 47028 ich2exprop 47345 ichnreuop 47346 ichreuopeq 47347 |
Copyright terms: Public domain | W3C validator |