| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbsbc | Structured version Visualization version GIF version | ||
| Description: Show that df-sb 2066 and df-sbc 3771 are equivalent when the class term 𝐴 in df-sbc 3771 is a setvar variable. This theorem lets us reuse theorems based on df-sb 2066 for proofs involving df-sbc 3771. (Contributed by NM, 31-Dec-2016.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| sbsbc | ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2736 | . 2 ⊢ 𝑦 = 𝑦 | |
| 2 | dfsbcq2 3773 | . 2 ⊢ (𝑦 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 [wsb 2065 [wsbc 3770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clab 2715 df-cleq 2728 df-clel 2810 df-sbc 3771 |
| This theorem is referenced by: spsbc 3783 sbcid 3787 sbccow 3793 sbcco 3796 sbcco2 3797 sbcie2g 3811 eqsbc1 3817 sbcralt 3852 cbvralcsf 3921 cbvreucsf 3923 cbvrabcsf 3924 sbnfc2 4419 csbab 4420 csbie2df 4423 2nreu 4424 frpoins2fg 6338 wfis2fgOLD 6351 isarep1OLD 6632 tfindes 7863 tfinds2 7864 frins2f 9772 iuninc 32546 suppss2f 32621 fmptdF 32639 disjdsct 32685 esumpfinvalf 34112 measiuns 34253 bnj580 34949 bnj985v 34989 bnj985 34990 xpab 35748 setinds2f 35802 bj-sbeq 36924 bj-sbel1 36928 bj-snsetex 36986 poimirlem25 37674 poimirlem26 37675 fdc1 37775 exlimddvfi 38151 frege52b 43880 frege58c 43912 pm13.194 44403 pm14.12 44412 sbiota1 44425 onfrALTlem1 44540 onfrALTlem1VD 44881 disjinfi 45183 ellimcabssub0 45613 2reu8i 47109 ich2exprop 47452 ichnreuop 47453 ichreuopeq 47454 |
| Copyright terms: Public domain | W3C validator |