![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > sbsbc | Structured version Visualization version GIF version |
Description: Show that df-sb 2069 and df-sbc 3779 are equivalent when the class term 𝐴 in df-sbc 3779 is a setvar variable. This theorem lets us reuse theorems based on df-sb 2069 for proofs involving df-sbc 3779. (Contributed by NM, 31-Dec-2016.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
sbsbc | ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . 2 ⊢ 𝑦 = 𝑦 | |
2 | dfsbcq2 3781 | . 2 ⊢ (𝑦 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 [wsb 2068 [wsbc 3778 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-clab 2711 df-cleq 2725 df-clel 2811 df-sbc 3779 |
This theorem is referenced by: spsbc 3791 sbcid 3795 sbccow 3801 sbcco 3804 sbcco2 3805 sbcie2g 3820 eqsbc1 3827 sbcralt 3867 cbvralcsf 3939 cbvreucsf 3941 cbvrabcsf 3942 sbnfc2 4437 csbab 4438 csbie2df 4441 2nreu 4442 frpoins2fg 6346 wfis2fgOLD 6359 isarep1OLD 6639 tfindes 7852 tfinds2 7853 frins2f 9748 iuninc 31792 suppss2f 31863 fmptdF 31881 disjdsct 31924 esumpfinvalf 33074 measiuns 33215 bnj580 33924 bnj985v 33964 bnj985 33965 xpab 34695 setinds2f 34751 bj-sbeq 35781 bj-sbel1 35785 bj-snsetex 35844 poimirlem25 36513 poimirlem26 36514 fdc1 36614 exlimddvfi 36990 frege52b 42640 frege58c 42672 pm13.194 43171 pm14.12 43180 sbiota1 43193 onfrALTlem1 43309 onfrALTlem1VD 43651 disjinfi 43891 ellimcabssub0 44333 2reu8i 45821 ich2exprop 46139 ichnreuop 46140 ichreuopeq 46141 |
Copyright terms: Public domain | W3C validator |