| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbsbc | Structured version Visualization version GIF version | ||
| Description: Show that df-sb 2066 and df-sbc 3751 are equivalent when the class term 𝐴 in df-sbc 3751 is a setvar variable. This theorem lets us reuse theorems based on df-sb 2066 for proofs involving df-sbc 3751. (Contributed by NM, 31-Dec-2016.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| sbsbc | ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ 𝑦 = 𝑦 | |
| 2 | dfsbcq2 3753 | . 2 ⊢ (𝑦 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 [wsb 2065 [wsbc 3750 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clab 2708 df-cleq 2721 df-clel 2803 df-sbc 3751 |
| This theorem is referenced by: spsbc 3763 sbcid 3767 sbccow 3773 sbcco 3776 sbcco2 3777 sbcie2g 3791 eqsbc1 3797 sbcralt 3832 cbvralcsf 3901 cbvreucsf 3903 cbvrabcsf 3904 sbnfc2 4398 csbab 4399 csbie2df 4402 2nreu 4403 frpoins2fg 6305 tfindes 7819 tfinds2 7820 frins2f 9682 iuninc 32539 suppss2f 32612 fmptdF 32630 disjdsct 32676 esumpfinvalf 34059 measiuns 34200 bnj580 34896 bnj985v 34936 bnj985 34937 xpab 35706 setinds2f 35760 bj-sbeq 36882 bj-sbel1 36886 bj-snsetex 36944 poimirlem25 37632 poimirlem26 37633 fdc1 37733 exlimddvfi 38109 frege52b 43871 frege58c 43903 pm13.194 44394 pm14.12 44403 sbiota1 44416 onfrALTlem1 44531 onfrALTlem1VD 44872 disjinfi 45179 ellimcabssub0 45608 2reu8i 47107 ich2exprop 47465 ichnreuop 47466 ichreuopeq 47467 |
| Copyright terms: Public domain | W3C validator |