| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbsbc | Structured version Visualization version GIF version | ||
| Description: Show that df-sb 2064 and df-sbc 3764 are equivalent when the class term 𝐴 in df-sbc 3764 is a setvar variable. This theorem lets us reuse theorems based on df-sb 2064 for proofs involving df-sbc 3764. (Contributed by NM, 31-Dec-2016.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| sbsbc | ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . 2 ⊢ 𝑦 = 𝑦 | |
| 2 | dfsbcq2 3766 | . 2 ⊢ (𝑦 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 [wsb 2063 [wsbc 3763 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-clab 2713 df-cleq 2726 df-clel 2808 df-sbc 3764 |
| This theorem is referenced by: spsbc 3776 sbcid 3780 sbccow 3786 sbcco 3789 sbcco2 3790 sbcie2g 3804 eqsbc1 3810 sbcralt 3845 cbvralcsf 3914 cbvreucsf 3916 cbvrabcsf 3917 sbnfc2 4412 csbab 4413 csbie2df 4416 2nreu 4417 frpoins2fg 6330 wfis2fgOLD 6343 isarep1OLD 6623 tfindes 7852 tfinds2 7853 frins2f 9759 iuninc 32474 suppss2f 32549 fmptdF 32567 disjdsct 32613 esumpfinvalf 34015 measiuns 34156 bnj580 34865 bnj985v 34905 bnj985 34906 xpab 35664 setinds2f 35718 bj-sbeq 36840 bj-sbel1 36844 bj-snsetex 36902 poimirlem25 37590 poimirlem26 37591 fdc1 37691 exlimddvfi 38067 frege52b 43838 frege58c 43870 pm13.194 44362 pm14.12 44371 sbiota1 44384 onfrALTlem1 44499 onfrALTlem1VD 44841 disjinfi 45143 ellimcabssub0 45576 2reu8i 47070 ich2exprop 47403 ichnreuop 47404 ichreuopeq 47405 |
| Copyright terms: Public domain | W3C validator |