| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbsbc | Structured version Visualization version GIF version | ||
| Description: Show that df-sb 2068 and df-sbc 3737 are equivalent when the class term 𝐴 in df-sbc 3737 is a setvar variable. This theorem lets us reuse theorems based on df-sb 2068 for proofs involving df-sbc 3737. (Contributed by NM, 31-Dec-2016.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| sbsbc | ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . 2 ⊢ 𝑦 = 𝑦 | |
| 2 | dfsbcq2 3739 | . 2 ⊢ (𝑦 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 [wsb 2067 [wsbc 3736 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-clab 2710 df-cleq 2723 df-clel 2806 df-sbc 3737 |
| This theorem is referenced by: spsbc 3749 sbcid 3753 sbccow 3759 sbcco 3762 sbcco2 3763 sbcie2g 3777 eqsbc1 3783 sbcralt 3818 cbvralcsf 3887 cbvreucsf 3889 cbvrabcsf 3890 sbnfc2 4386 csbab 4387 csbie2df 4390 2nreu 4391 frpoins2fg 6291 tfindes 7793 tfinds2 7794 setinds2f 9640 frins2f 9646 iuninc 32540 suppss2f 32620 fmptdF 32638 disjdsct 32684 esumpfinvalf 34089 measiuns 34230 bnj580 34925 bnj985v 34965 bnj985 34966 xpab 35770 bj-sbeq 36945 bj-sbel1 36949 bj-snsetex 37007 poimirlem25 37695 poimirlem26 37696 fdc1 37796 exlimddvfi 38172 frege52b 43992 frege58c 44024 pm13.194 44515 pm14.12 44524 sbiota1 44537 onfrALTlem1 44651 onfrALTlem1VD 44992 disjinfi 45299 ellimcabssub0 45727 2reu8i 47223 ich2exprop 47581 ichnreuop 47582 ichreuopeq 47583 |
| Copyright terms: Public domain | W3C validator |