| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbsbc | Structured version Visualization version GIF version | ||
| Description: Show that df-sb 2066 and df-sbc 3743 are equivalent when the class term 𝐴 in df-sbc 3743 is a setvar variable. This theorem lets us reuse theorems based on df-sb 2066 for proofs involving df-sbc 3743. (Contributed by NM, 31-Dec-2016.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| sbsbc | ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ 𝑦 = 𝑦 | |
| 2 | dfsbcq2 3745 | . 2 ⊢ (𝑦 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ([𝑦 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 [wsb 2065 [wsbc 3742 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-clab 2708 df-cleq 2721 df-clel 2803 df-sbc 3743 |
| This theorem is referenced by: spsbc 3755 sbcid 3759 sbccow 3765 sbcco 3768 sbcco2 3769 sbcie2g 3783 eqsbc1 3789 sbcralt 3824 cbvralcsf 3893 cbvreucsf 3895 cbvrabcsf 3896 sbnfc2 4390 csbab 4391 csbie2df 4394 2nreu 4395 frpoins2fg 6292 tfindes 7796 tfinds2 7797 frins2f 9649 iuninc 32504 suppss2f 32582 fmptdF 32600 disjdsct 32646 esumpfinvalf 34049 measiuns 34190 bnj580 34886 bnj985v 34926 bnj985 34927 xpab 35709 setinds2f 35763 bj-sbeq 36885 bj-sbel1 36889 bj-snsetex 36947 poimirlem25 37635 poimirlem26 37636 fdc1 37736 exlimddvfi 38112 frege52b 43872 frege58c 43904 pm13.194 44395 pm14.12 44404 sbiota1 44417 onfrALTlem1 44532 onfrALTlem1VD 44873 disjinfi 45180 ellimcabssub0 45608 2reu8i 47107 ich2exprop 47465 ichnreuop 47466 ichreuopeq 47467 |
| Copyright terms: Public domain | W3C validator |