|   | Mathbox for Richard Penner | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege64a | Structured version Visualization version GIF version | ||
| Description: Lemma for frege65a 43901. Proposition 64 of [Frege1879] p. 53. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) | 
| Ref | Expression | 
|---|---|
| frege64a | ⊢ ((if-(𝜑, 𝜓, 𝜏) → if-(𝜎, 𝜒, 𝜂)) → (((𝜒 → 𝜃) ∧ (𝜂 → 𝜁)) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜎, 𝜃, 𝜁)))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | frege62a 43898 | . 2 ⊢ (if-(𝜎, 𝜒, 𝜂) → (((𝜒 → 𝜃) ∧ (𝜂 → 𝜁)) → if-(𝜎, 𝜃, 𝜁))) | |
| 2 | frege18 43836 | . 2 ⊢ ((if-(𝜎, 𝜒, 𝜂) → (((𝜒 → 𝜃) ∧ (𝜂 → 𝜁)) → if-(𝜎, 𝜃, 𝜁))) → ((if-(𝜑, 𝜓, 𝜏) → if-(𝜎, 𝜒, 𝜂)) → (((𝜒 → 𝜃) ∧ (𝜂 → 𝜁)) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜎, 𝜃, 𝜁))))) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((if-(𝜑, 𝜓, 𝜏) → if-(𝜎, 𝜒, 𝜂)) → (((𝜒 → 𝜃) ∧ (𝜂 → 𝜁)) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜎, 𝜃, 𝜁)))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 if-wif 1062 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-frege1 43808 ax-frege2 43809 ax-frege8 43827 ax-frege58a 43893 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 | 
| This theorem is referenced by: frege65a 43901 | 
| Copyright terms: Public domain | W3C validator |