Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fresison | Structured version Visualization version GIF version |
Description: "Fresison", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓 (PeM), and some 𝜓 is 𝜒 (MiS), therefore some 𝜒 is not 𝜑 (SoP). In Aristotelian notation, EIO-4: PeM and MiS therefore SoP. (Contributed by David A. Wheeler, 28-Aug-2016.) Shorten and reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022.) |
Ref | Expression |
---|---|
fresison.maj | ⊢ ∀𝑥(𝜑 → ¬ 𝜓) |
fresison.min | ⊢ ∃𝑥(𝜓 ∧ 𝜒) |
Ref | Expression |
---|---|
fresison | ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fresison.maj | . 2 ⊢ ∀𝑥(𝜑 → ¬ 𝜓) | |
2 | fresison.min | . . 3 ⊢ ∃𝑥(𝜓 ∧ 𝜒) | |
3 | exancom 1864 | . . 3 ⊢ (∃𝑥(𝜓 ∧ 𝜒) ↔ ∃𝑥(𝜒 ∧ 𝜓)) | |
4 | 2, 3 | mpbi 229 | . 2 ⊢ ∃𝑥(𝜒 ∧ 𝜓) |
5 | 1, 4 | festino 2675 | 1 ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |