MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fresison Structured version   Visualization version   GIF version

Theorem fresison 2690
Description: "Fresison", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓 (PeM), and some 𝜓 is 𝜒 (MiS), therefore some 𝜒 is not 𝜑 (SoP). In Aristotelian notation, EIO-4: PeM and MiS therefore SoP. (Contributed by David A. Wheeler, 28-Aug-2016.) Shorten and reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022.)
Hypotheses
Ref Expression
fresison.maj 𝑥(𝜑 → ¬ 𝜓)
fresison.min 𝑥(𝜓𝜒)
Assertion
Ref Expression
fresison 𝑥(𝜒 ∧ ¬ 𝜑)

Proof of Theorem fresison
StepHypRef Expression
1 fresison.maj . 2 𝑥(𝜑 → ¬ 𝜓)
2 fresison.min . . 3 𝑥(𝜓𝜒)
3 exancom 1864 . . 3 (∃𝑥(𝜓𝜒) ↔ ∃𝑥(𝜒𝜓))
42, 3mpbi 229 . 2 𝑥(𝜒𝜓)
51, 4festino 2675 1 𝑥(𝜒 ∧ ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  wal 1537  wex 1782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator