MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  festino Structured version   Visualization version   GIF version

Theorem festino 2675
Description: "Festino", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓, and some 𝜒 is 𝜓, therefore some 𝜒 is not 𝜑. In Aristotelian notation, EIO-2: PeM and SiM therefore SoP. (Contributed by David A. Wheeler, 25-Nov-2016.) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022.)
Hypotheses
Ref Expression
festino.maj 𝑥(𝜑 → ¬ 𝜓)
festino.min 𝑥(𝜒𝜓)
Assertion
Ref Expression
festino 𝑥(𝜒 ∧ ¬ 𝜑)

Proof of Theorem festino
StepHypRef Expression
1 festino.maj . . 3 𝑥(𝜑 → ¬ 𝜓)
2 con2 135 . . . . 5 ((𝜑 → ¬ 𝜓) → (𝜓 → ¬ 𝜑))
32anim2d 611 . . . 4 ((𝜑 → ¬ 𝜓) → ((𝜒𝜓) → (𝜒 ∧ ¬ 𝜑)))
43alimi 1815 . . 3 (∀𝑥(𝜑 → ¬ 𝜓) → ∀𝑥((𝜒𝜓) → (𝜒 ∧ ¬ 𝜑)))
51, 4ax-mp 5 . 2 𝑥((𝜒𝜓) → (𝜒 ∧ ¬ 𝜑))
6 festino.min . 2 𝑥(𝜒𝜓)
7 exim 1837 . 2 (∀𝑥((𝜒𝜓) → (𝜒 ∧ ¬ 𝜑)) → (∃𝑥(𝜒𝜓) → ∃𝑥(𝜒 ∧ ¬ 𝜑)))
85, 6, 7mp2 9 1 𝑥(𝜒 ∧ ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1537  wex 1783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784
This theorem is referenced by:  fresison  2690
  Copyright terms: Public domain W3C validator