| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > festino | Structured version Visualization version GIF version | ||
| Description: "Festino", one of the syllogisms of Aristotelian logic. No 𝜑 is 𝜓, and some 𝜒 is 𝜓, therefore some 𝜒 is not 𝜑. In Aristotelian notation, EIO-2: PeM and SiM therefore SoP. (Contributed by David A. Wheeler, 25-Nov-2016.) Reduce dependencies on axioms. (Revised by BJ, 16-Sep-2022.) |
| Ref | Expression |
|---|---|
| festino.maj | ⊢ ∀𝑥(𝜑 → ¬ 𝜓) |
| festino.min | ⊢ ∃𝑥(𝜒 ∧ 𝜓) |
| Ref | Expression |
|---|---|
| festino | ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | festino.maj | . . 3 ⊢ ∀𝑥(𝜑 → ¬ 𝜓) | |
| 2 | con2 135 | . . . . 5 ⊢ ((𝜑 → ¬ 𝜓) → (𝜓 → ¬ 𝜑)) | |
| 3 | 2 | anim2d 612 | . . . 4 ⊢ ((𝜑 → ¬ 𝜓) → ((𝜒 ∧ 𝜓) → (𝜒 ∧ ¬ 𝜑))) |
| 4 | 3 | alimi 1811 | . . 3 ⊢ (∀𝑥(𝜑 → ¬ 𝜓) → ∀𝑥((𝜒 ∧ 𝜓) → (𝜒 ∧ ¬ 𝜑))) |
| 5 | 1, 4 | ax-mp 5 | . 2 ⊢ ∀𝑥((𝜒 ∧ 𝜓) → (𝜒 ∧ ¬ 𝜑)) |
| 6 | festino.min | . 2 ⊢ ∃𝑥(𝜒 ∧ 𝜓) | |
| 7 | exim 1834 | . 2 ⊢ (∀𝑥((𝜒 ∧ 𝜓) → (𝜒 ∧ ¬ 𝜑)) → (∃𝑥(𝜒 ∧ 𝜓) → ∃𝑥(𝜒 ∧ ¬ 𝜑))) | |
| 8 | 5, 6, 7 | mp2 9 | 1 ⊢ ∃𝑥(𝜒 ∧ ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: fresison 2689 |
| Copyright terms: Public domain | W3C validator |