Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hadrot | Structured version Visualization version GIF version |
Description: Rotation law for the adder sum. (Contributed by Mario Carneiro, 4-Sep-2016.) |
Ref | Expression |
---|---|
hadrot | ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ hadd(𝜓, 𝜒, 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hadcoma 1601 | . 2 ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ hadd(𝜓, 𝜑, 𝜒)) | |
2 | hadcomb 1603 | . 2 ⊢ (hadd(𝜓, 𝜑, 𝜒) ↔ hadd(𝜓, 𝜒, 𝜑)) | |
3 | 1, 2 | bitri 274 | 1 ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ hadd(𝜓, 𝜒, 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 haddwhad 1595 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-xor 1504 df-had 1596 |
This theorem is referenced by: had1 1606 sadadd2lem2 16085 saddisjlem 16099 |
Copyright terms: Public domain | W3C validator |