| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hadrot | Structured version Visualization version GIF version | ||
| Description: Rotation law for the adder sum. (Contributed by Mario Carneiro, 4-Sep-2016.) |
| Ref | Expression |
|---|---|
| hadrot | ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ hadd(𝜓, 𝜒, 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hadcoma 1599 | . 2 ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ hadd(𝜓, 𝜑, 𝜒)) | |
| 2 | hadcomb 1600 | . 2 ⊢ (hadd(𝜓, 𝜑, 𝜒) ↔ hadd(𝜓, 𝜒, 𝜑)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ hadd(𝜓, 𝜒, 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 haddwhad 1593 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-xor 1512 df-had 1594 |
| This theorem is referenced by: had1 1603 sadadd2lem2 16474 saddisjlem 16488 |
| Copyright terms: Public domain | W3C validator |