|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > hadrot | Structured version Visualization version GIF version | ||
| Description: Rotation law for the adder sum. (Contributed by Mario Carneiro, 4-Sep-2016.) | 
| Ref | Expression | 
|---|---|
| hadrot | ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ hadd(𝜓, 𝜒, 𝜑)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | hadcoma 1599 | . 2 ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ hadd(𝜓, 𝜑, 𝜒)) | |
| 2 | hadcomb 1600 | . 2 ⊢ (hadd(𝜓, 𝜑, 𝜒) ↔ hadd(𝜓, 𝜒, 𝜑)) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (hadd(𝜑, 𝜓, 𝜒) ↔ hadd(𝜓, 𝜒, 𝜑)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 haddwhad 1593 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-xor 1512 df-had 1594 | 
| This theorem is referenced by: had1 1603 sadadd2lem2 16487 saddisjlem 16501 | 
| Copyright terms: Public domain | W3C validator |