Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbimg Structured version   Visualization version   GIF version

Theorem hbimg 33691
Description: A more general form of hbim 2299. (Contributed by Scott Fenton, 13-Dec-2010.)
Hypotheses
Ref Expression
hbg.1 (𝜑 → ∀𝑥𝜓)
hbg.2 (𝜒 → ∀𝑥𝜃)
Assertion
Ref Expression
hbimg ((𝜓𝜒) → ∀𝑥(𝜑𝜃))

Proof of Theorem hbimg
StepHypRef Expression
1 hbg.1 . . 3 (𝜑 → ∀𝑥𝜓)
21ax-gen 1799 . 2 𝑥(𝜑 → ∀𝑥𝜓)
3 hbg.2 . 2 (𝜒 → ∀𝑥𝜃)
4 hbimtg 33688 . 2 ((∀𝑥(𝜑 → ∀𝑥𝜓) ∧ (𝜒 → ∀𝑥𝜃)) → ((𝜓𝜒) → ∀𝑥(𝜑𝜃)))
52, 3, 4mp2an 688 1 ((𝜓𝜒) → ∀𝑥(𝜑𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-10 2139  ax-12 2173
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator