Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hbimg | Structured version Visualization version GIF version |
Description: A more general form of hbim 2296. (Contributed by Scott Fenton, 13-Dec-2010.) |
Ref | Expression |
---|---|
hbg.1 | ⊢ (𝜑 → ∀𝑥𝜓) |
hbg.2 | ⊢ (𝜒 → ∀𝑥𝜃) |
Ref | Expression |
---|---|
hbimg | ⊢ ((𝜓 → 𝜒) → ∀𝑥(𝜑 → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbg.1 | . . 3 ⊢ (𝜑 → ∀𝑥𝜓) | |
2 | 1 | ax-gen 1798 | . 2 ⊢ ∀𝑥(𝜑 → ∀𝑥𝜓) |
3 | hbg.2 | . 2 ⊢ (𝜒 → ∀𝑥𝜃) | |
4 | hbimtg 33782 | . 2 ⊢ ((∀𝑥(𝜑 → ∀𝑥𝜓) ∧ (𝜒 → ∀𝑥𝜃)) → ((𝜓 → 𝜒) → ∀𝑥(𝜑 → 𝜃))) | |
5 | 2, 3, 4 | mp2an 689 | 1 ⊢ ((𝜓 → 𝜒) → ∀𝑥(𝜑 → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-10 2137 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |