MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbim Structured version   Visualization version   GIF version

Theorem hbim 2303
Description: If 𝑥 is not free in 𝜑 and 𝜓, it is not free in (𝜑𝜓). (Contributed by NM, 24-Jan-1993.) (Proof shortened by Mel L. O'Cat, 3-Mar-2008.) (Proof shortened by Wolf Lammen, 1-Jan-2018.)
Hypotheses
Ref Expression
hbim.1 (𝜑 → ∀𝑥𝜑)
hbim.2 (𝜓 → ∀𝑥𝜓)
Assertion
Ref Expression
hbim ((𝜑𝜓) → ∀𝑥(𝜑𝜓))

Proof of Theorem hbim
StepHypRef Expression
1 hbim.1 . 2 (𝜑 → ∀𝑥𝜑)
2 hbim.2 . . 3 (𝜓 → ∀𝑥𝜓)
32a1i 11 . 2 (𝜑 → (𝜓 → ∀𝑥𝜓))
41, 3hbim1 2301 1 ((𝜑𝜓) → ∀𝑥(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-10 2141  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-ex 1778  df-nf 1782
This theorem is referenced by:  axi5r  2703  hbral  3314
  Copyright terms: Public domain W3C validator