| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hbn1fw | Structured version Visualization version GIF version | ||
| Description: Weak version of ax-10 2142 from which we can prove any ax-10 2142 instance not involving wff variables or bundling. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 19-Apr-2017.) (Proof shortened by Wolf Lammen, 28-Feb-2018.) |
| Ref | Expression |
|---|---|
| hbn1fw.1 | ⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) |
| hbn1fw.2 | ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) |
| hbn1fw.3 | ⊢ (∀𝑦𝜓 → ∀𝑥∀𝑦𝜓) |
| hbn1fw.4 | ⊢ (¬ 𝜑 → ∀𝑦 ¬ 𝜑) |
| hbn1fw.5 | ⊢ (¬ ∀𝑦𝜓 → ∀𝑥 ¬ ∀𝑦𝜓) |
| hbn1fw.6 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| hbn1fw | ⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbn1fw.1 | . . . 4 ⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) | |
| 2 | hbn1fw.2 | . . . 4 ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) | |
| 3 | hbn1fw.3 | . . . 4 ⊢ (∀𝑦𝜓 → ∀𝑥∀𝑦𝜓) | |
| 4 | hbn1fw.4 | . . . 4 ⊢ (¬ 𝜑 → ∀𝑦 ¬ 𝜑) | |
| 5 | hbn1fw.6 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 6 | 1, 2, 3, 4, 5 | cbvalw 2035 | . . 3 ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
| 7 | 6 | notbii 320 | . 2 ⊢ (¬ ∀𝑥𝜑 ↔ ¬ ∀𝑦𝜓) |
| 8 | hbn1fw.5 | . 2 ⊢ (¬ ∀𝑦𝜓 → ∀𝑥 ¬ ∀𝑦𝜓) | |
| 9 | 7, 8 | hbxfrbi 1825 | 1 ⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: hbn1w 2047 |
| Copyright terms: Public domain | W3C validator |