Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hbn1fw | Structured version Visualization version GIF version |
Description: Weak version of ax-10 2139 from which we can prove any ax-10 2139 instance not involving wff variables or bundling. Uses only Tarski's FOL axiom schemes. (Contributed by NM, 19-Apr-2017.) (Proof shortened by Wolf Lammen, 28-Feb-2018.) |
Ref | Expression |
---|---|
hbn1fw.1 | ⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) |
hbn1fw.2 | ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) |
hbn1fw.3 | ⊢ (∀𝑦𝜓 → ∀𝑥∀𝑦𝜓) |
hbn1fw.4 | ⊢ (¬ 𝜑 → ∀𝑦 ¬ 𝜑) |
hbn1fw.5 | ⊢ (¬ ∀𝑦𝜓 → ∀𝑥 ¬ ∀𝑦𝜓) |
hbn1fw.6 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
hbn1fw | ⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbn1fw.1 | . . . 4 ⊢ (∀𝑥𝜑 → ∀𝑦∀𝑥𝜑) | |
2 | hbn1fw.2 | . . . 4 ⊢ (¬ 𝜓 → ∀𝑥 ¬ 𝜓) | |
3 | hbn1fw.3 | . . . 4 ⊢ (∀𝑦𝜓 → ∀𝑥∀𝑦𝜓) | |
4 | hbn1fw.4 | . . . 4 ⊢ (¬ 𝜑 → ∀𝑦 ¬ 𝜑) | |
5 | hbn1fw.6 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
6 | 1, 2, 3, 4, 5 | cbvalw 2039 | . . 3 ⊢ (∀𝑥𝜑 ↔ ∀𝑦𝜓) |
7 | 6 | notbii 319 | . 2 ⊢ (¬ ∀𝑥𝜑 ↔ ¬ ∀𝑦𝜓) |
8 | hbn1fw.5 | . 2 ⊢ (¬ ∀𝑦𝜓 → ∀𝑥 ¬ ∀𝑦𝜓) | |
9 | 7, 8 | hbxfrbi 1828 | 1 ⊢ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 |
This theorem is referenced by: hbn1w 2050 |
Copyright terms: Public domain | W3C validator |