Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > alcomw | Structured version Visualization version GIF version |
Description: Weak version of alcom 2154 and biconditional form of alcomiw 2044. Uses only Tarski's FOL axiom schemes. (Contributed by BTernaryTau, 28-Dec-2024.) |
Ref | Expression |
---|---|
alcomw.1 | ⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜓)) |
alcomw.2 | ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜒)) |
Ref | Expression |
---|---|
alcomw | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alcomw.2 | . . 3 ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜒)) | |
2 | 1 | alcomiw 2044 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) |
3 | alcomw.1 | . . 3 ⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜓)) | |
4 | 3 | alcomiw 2044 | . 2 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) |
5 | 2, 4 | impbii 208 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1780 |
This theorem is referenced by: unissb 4879 dftr2c 5201 cotrg 6027 cnvsym 6032 dffun2 6468 |
Copyright terms: Public domain | W3C validator |