MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  alcomw Structured version   Visualization version   GIF version

Theorem alcomw 2045
Description: Weak version of alcom 2154 and biconditional form of alcomiw 2044. Uses only Tarski's FOL axiom schemes. (Contributed by BTernaryTau, 28-Dec-2024.)
Hypotheses
Ref Expression
alcomw.1 (𝑥 = 𝑤 → (𝜑𝜓))
alcomw.2 (𝑦 = 𝑧 → (𝜑𝜒))
Assertion
Ref Expression
alcomw (∀𝑥𝑦𝜑 ↔ ∀𝑦𝑥𝜑)
Distinct variable groups:   𝜑,𝑧   𝜑,𝑤   𝜓,𝑥   𝜒,𝑦   𝑥,𝑦   𝑦,𝑧   𝑥,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦,𝑧,𝑤)   𝜒(𝑥,𝑧,𝑤)

Proof of Theorem alcomw
StepHypRef Expression
1 alcomw.2 . . 3 (𝑦 = 𝑧 → (𝜑𝜒))
21alcomiw 2044 . 2 (∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
3 alcomw.1 . . 3 (𝑥 = 𝑤 → (𝜑𝜓))
43alcomiw 2044 . 2 (∀𝑦𝑥𝜑 → ∀𝑥𝑦𝜑)
52, 4impbii 208 1 (∀𝑥𝑦𝜑 ↔ ∀𝑦𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1780
This theorem is referenced by:  unissb  4879  dftr2c  5201  cotrg  6027  cnvsym  6032  dffun2  6468
  Copyright terms: Public domain W3C validator