| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > alcomw | Structured version Visualization version GIF version | ||
| Description: Weak version of alcom 2159 and biconditional form of alcomimw 2042. Uses only Tarski's FOL axiom schemes. (Contributed by BTernaryTau, 28-Dec-2024.) |
| Ref | Expression |
|---|---|
| alcomw.1 | ⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜓)) |
| alcomw.2 | ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| alcomw | ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alcomw.2 | . . 3 ⊢ (𝑦 = 𝑧 → (𝜑 ↔ 𝜒)) | |
| 2 | 1 | alcomimw 2042 | . 2 ⊢ (∀𝑥∀𝑦𝜑 → ∀𝑦∀𝑥𝜑) |
| 3 | alcomw.1 | . . 3 ⊢ (𝑥 = 𝑤 → (𝜑 ↔ 𝜓)) | |
| 4 | 3 | alcomimw 2042 | . 2 ⊢ (∀𝑦∀𝑥𝜑 → ∀𝑥∀𝑦𝜑) |
| 5 | 2, 4 | impbii 209 | 1 ⊢ (∀𝑥∀𝑦𝜑 ↔ ∀𝑦∀𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 |
| This theorem is referenced by: cgsex4gOLD 3508 unissb 4915 dftr2c 5232 cotrg 6096 cnvsym 6101 dffun2 6541 |
| Copyright terms: Public domain | W3C validator |