MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbxfrbi Structured version   Visualization version   GIF version

Theorem hbxfrbi 1828
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. See hbxfreq 2868 for equality version. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
hbxfrbi.1 (𝜑𝜓)
hbxfrbi.2 (𝜓 → ∀𝑥𝜓)
Assertion
Ref Expression
hbxfrbi (𝜑 → ∀𝑥𝜑)

Proof of Theorem hbxfrbi
StepHypRef Expression
1 hbxfrbi.2 . 2 (𝜓 → ∀𝑥𝜓)
2 hbxfrbi.1 . 2 (𝜑𝜓)
32albii 1823 . 2 (∀𝑥𝜑 ↔ ∀𝑥𝜓)
41, 2, 33imtr4i 291 1 (𝜑 → ∀𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  hbn1fw  2049  hbe1w  2052  hbe1  2141  hbsbw  2171  hbab1OLD  2725  hbab  2726  hbabg  2727  hbxfreq  2868  hbral  3144  bnj982  32658  bnj1095  32661  bnj1096  32662  bnj1276  32694  bnj594  32792  bnj1445  32924  hbra2VD  42369
  Copyright terms: Public domain W3C validator