MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbxfrbi Structured version   Visualization version   GIF version

Theorem hbxfrbi 1823
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. See hbxfreq 2875 for equality version. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
hbxfrbi.1 (𝜑𝜓)
hbxfrbi.2 (𝜓 → ∀𝑥𝜓)
Assertion
Ref Expression
hbxfrbi (𝜑 → ∀𝑥𝜑)

Proof of Theorem hbxfrbi
StepHypRef Expression
1 hbxfrbi.2 . 2 (𝜓 → ∀𝑥𝜓)
2 hbxfrbi.1 . 2 (𝜑𝜓)
32albii 1817 . 2 (∀𝑥𝜑 ↔ ∀𝑥𝜓)
41, 2, 33imtr4i 292 1 (𝜑 → ∀𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  hbn1fw  2045  hbe1w  2048  hbe1  2143  hbsbwOLD  2173  hbab1OLD  2727  hbab  2728  hbabg  2729  hbxfreq  2875  hbral  3314  bnj982  34754  bnj1095  34757  bnj1096  34758  bnj1276  34790  bnj594  34888  bnj1445  35020  hbra2VD  44831
  Copyright terms: Public domain W3C validator