MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbxfrbi Structured version   Visualization version   GIF version

Theorem hbxfrbi 1825
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. See hbxfreq 2866 for equality version. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
hbxfrbi.1 (𝜑𝜓)
hbxfrbi.2 (𝜓 → ∀𝑥𝜓)
Assertion
Ref Expression
hbxfrbi (𝜑 → ∀𝑥𝜑)

Proof of Theorem hbxfrbi
StepHypRef Expression
1 hbxfrbi.2 . 2 (𝜓 → ∀𝑥𝜓)
2 hbxfrbi.1 . 2 (𝜑𝜓)
32albii 1819 . 2 (∀𝑥𝜑 ↔ ∀𝑥𝜓)
41, 2, 33imtr4i 292 1 (𝜑 → ∀𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  hbn1fw  2046  hbe1w  2049  hbe1  2144  hbsbwOLD  2173  hbab  2724  hbabg  2725  hbxfreq  2866  hbral  3292  bnj982  34814  bnj1095  34817  bnj1096  34818  bnj1276  34850  bnj594  34948  bnj1445  35080  hbra2VD  44851
  Copyright terms: Public domain W3C validator