![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hbxfrbi | Structured version Visualization version GIF version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. See hbxfreq 2864 for equality version. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
hbxfrbi.1 | ⊢ (𝜑 ↔ 𝜓) |
hbxfrbi.2 | ⊢ (𝜓 → ∀𝑥𝜓) |
Ref | Expression |
---|---|
hbxfrbi | ⊢ (𝜑 → ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbxfrbi.2 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
2 | hbxfrbi.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | albii 1821 | . 2 ⊢ (∀𝑥𝜑 ↔ ∀𝑥𝜓) |
4 | 1, 2, 3 | 3imtr4i 291 | 1 ⊢ (𝜑 → ∀𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: hbn1fw 2048 hbe1w 2051 hbe1 2139 hbsbw 2169 hbab1OLD 2719 hbab 2720 hbabg 2721 hbxfreq 2864 hbral 3305 bnj982 33784 bnj1095 33787 bnj1096 33788 bnj1276 33820 bnj594 33918 bnj1445 34050 hbra2VD 43611 |
Copyright terms: Public domain | W3C validator |