![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hbxfrbi | Structured version Visualization version GIF version |
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. See hbxfreq 2870 for equality version. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
hbxfrbi.1 | ⊢ (𝜑 ↔ 𝜓) |
hbxfrbi.2 | ⊢ (𝜓 → ∀𝑥𝜓) |
Ref | Expression |
---|---|
hbxfrbi | ⊢ (𝜑 → ∀𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbxfrbi.2 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
2 | hbxfrbi.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
3 | 2 | albii 1816 | . 2 ⊢ (∀𝑥𝜑 ↔ ∀𝑥𝜓) |
4 | 1, 2, 3 | 3imtr4i 292 | 1 ⊢ (𝜑 → ∀𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: hbn1fw 2043 hbe1w 2046 hbe1 2141 hbsbwOLD 2170 hbab1OLD 2722 hbab 2723 hbabg 2724 hbxfreq 2870 hbral 3306 bnj982 34771 bnj1095 34774 bnj1096 34775 bnj1276 34807 bnj594 34905 bnj1445 35037 hbra2VD 44858 |
Copyright terms: Public domain | W3C validator |