| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hbxfrbi | Structured version Visualization version GIF version | ||
| Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. See hbxfreq 2859 for equality version. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
| Ref | Expression |
|---|---|
| hbxfrbi.1 | ⊢ (𝜑 ↔ 𝜓) |
| hbxfrbi.2 | ⊢ (𝜓 → ∀𝑥𝜓) |
| Ref | Expression |
|---|---|
| hbxfrbi | ⊢ (𝜑 → ∀𝑥𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hbxfrbi.2 | . 2 ⊢ (𝜓 → ∀𝑥𝜓) | |
| 2 | hbxfrbi.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 3 | 2 | albii 1819 | . 2 ⊢ (∀𝑥𝜑 ↔ ∀𝑥𝜓) |
| 4 | 1, 2, 3 | 3imtr4i 292 | 1 ⊢ (𝜑 → ∀𝑥𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: hbn1fw 2046 hbe1w 2049 hbe1 2144 hbsbwOLD 2173 hbab 2718 hbabg 2719 hbxfreq 2859 hbral 3284 bnj982 34775 bnj1095 34778 bnj1096 34779 bnj1276 34811 bnj594 34909 bnj1445 35041 hbra2VD 44856 |
| Copyright terms: Public domain | W3C validator |