MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbxfrbi Structured version   Visualization version   GIF version

Theorem hbxfrbi 1826
Description: A utility lemma to transfer a bound-variable hypothesis builder into a definition. See hbxfreq 2861 for equality version. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
Hypotheses
Ref Expression
hbxfrbi.1 (𝜑𝜓)
hbxfrbi.2 (𝜓 → ∀𝑥𝜓)
Assertion
Ref Expression
hbxfrbi (𝜑 → ∀𝑥𝜑)

Proof of Theorem hbxfrbi
StepHypRef Expression
1 hbxfrbi.2 . 2 (𝜓 → ∀𝑥𝜓)
2 hbxfrbi.1 . 2 (𝜑𝜓)
32albii 1820 . 2 (∀𝑥𝜑 ↔ ∀𝑥𝜓)
41, 2, 33imtr4i 292 1 (𝜑 → ∀𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810
This theorem depends on definitions:  df-bi 207
This theorem is referenced by:  hbn1fw  2048  hbe1w  2051  hbe1  2146  hbsbwOLD  2175  hbab  2719  hbabg  2720  hbxfreq  2861  hbral  3276  bnj982  34790  bnj1095  34793  bnj1096  34794  bnj1276  34826  bnj594  34924  bnj1445  35056  hbra2VD  44951
  Copyright terms: Public domain W3C validator