MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbnd Structured version   Visualization version   GIF version

Theorem hbnd 2305
Description: Deduction form of bound-variable hypothesis builder hbn 2304. (Contributed by NM, 3-Jan-2002.)
Hypotheses
Ref Expression
hbnd.1 (𝜑 → ∀𝑥𝜑)
hbnd.2 (𝜑 → (𝜓 → ∀𝑥𝜓))
Assertion
Ref Expression
hbnd (𝜑 → (¬ 𝜓 → ∀𝑥 ¬ 𝜓))

Proof of Theorem hbnd
StepHypRef Expression
1 hbnd.1 . . 3 (𝜑 → ∀𝑥𝜑)
2 hbnd.2 . . 3 (𝜑 → (𝜓 → ∀𝑥𝜓))
31, 2alrimih 1825 . 2 (𝜑 → ∀𝑥(𝜓 → ∀𝑥𝜓))
4 hbnt 2303 . 2 (∀𝑥(𝜓 → ∀𝑥𝜓) → (¬ 𝜓 → ∀𝑥 ¬ 𝜓))
53, 4syl 17 1 (𝜑 → (¬ 𝜓 → ∀𝑥 ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-10 2145  ax-12 2178
This theorem depends on definitions:  df-bi 210  df-or 845  df-ex 1782  df-nf 1786
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator