Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > hbn | Structured version Visualization version GIF version |
Description: If 𝑥 is not free in 𝜑, it is not free in ¬ 𝜑. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Wolf Lammen, 17-Dec-2017.) |
Ref | Expression |
---|---|
hbn.1 | ⊢ (𝜑 → ∀𝑥𝜑) |
Ref | Expression |
---|---|
hbn | ⊢ (¬ 𝜑 → ∀𝑥 ¬ 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hbnt 2290 | . 2 ⊢ (∀𝑥(𝜑 → ∀𝑥𝜑) → (¬ 𝜑 → ∀𝑥 ¬ 𝜑)) | |
2 | hbn.1 | . 2 ⊢ (𝜑 → ∀𝑥𝜑) | |
3 | 1, 2 | mpg 1798 | 1 ⊢ (¬ 𝜑 → ∀𝑥 ¬ 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∀wal 1538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-10 2136 ax-12 2170 |
This theorem depends on definitions: df-bi 206 df-or 845 df-ex 1781 df-nf 1785 |
This theorem is referenced by: hbnae 2430 ac6s6 36428 hbnae-o 37188 vk15.4j 42458 vk15.4jVD 42844 |
Copyright terms: Public domain | W3C validator |