| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpan123g | Structured version Visualization version GIF version | ||
| Description: Conjunction of conditional logical operators. (Contributed by RP, 18-Apr-2020.) |
| Ref | Expression |
|---|---|
| ifpan123g | ⊢ ((if-(𝜑, 𝜒, 𝜏) ∧ if-(𝜓, 𝜃, 𝜂)) ↔ (((¬ 𝜑 ∨ 𝜒) ∧ (𝜑 ∨ 𝜏)) ∧ ((¬ 𝜓 ∨ 𝜃) ∧ (𝜓 ∨ 𝜂)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfifp4 1067 | . 2 ⊢ (if-(𝜑, 𝜒, 𝜏) ↔ ((¬ 𝜑 ∨ 𝜒) ∧ (𝜑 ∨ 𝜏))) | |
| 2 | dfifp4 1067 | . 2 ⊢ (if-(𝜓, 𝜃, 𝜂) ↔ ((¬ 𝜓 ∨ 𝜃) ∧ (𝜓 ∨ 𝜂))) | |
| 3 | 1, 2 | anbi12i 628 | 1 ⊢ ((if-(𝜑, 𝜒, 𝜏) ∧ if-(𝜓, 𝜃, 𝜂)) ↔ (((¬ 𝜑 ∨ 𝜒) ∧ (𝜑 ∨ 𝜏)) ∧ ((¬ 𝜓 ∨ 𝜃) ∧ (𝜓 ∨ 𝜂)))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 848 if-wif 1063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ifp 1064 |
| This theorem is referenced by: ifpan23 43473 |
| Copyright terms: Public domain | W3C validator |