Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpan123g | Structured version Visualization version GIF version |
Description: Conjunction of conditional logical operators. (Contributed by RP, 18-Apr-2020.) |
Ref | Expression |
---|---|
ifpan123g | ⊢ ((if-(𝜑, 𝜒, 𝜏) ∧ if-(𝜓, 𝜃, 𝜂)) ↔ (((¬ 𝜑 ∨ 𝜒) ∧ (𝜑 ∨ 𝜏)) ∧ ((¬ 𝜓 ∨ 𝜃) ∧ (𝜓 ∨ 𝜂)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfifp4 1063 | . 2 ⊢ (if-(𝜑, 𝜒, 𝜏) ↔ ((¬ 𝜑 ∨ 𝜒) ∧ (𝜑 ∨ 𝜏))) | |
2 | dfifp4 1063 | . 2 ⊢ (if-(𝜓, 𝜃, 𝜂) ↔ ((¬ 𝜓 ∨ 𝜃) ∧ (𝜓 ∨ 𝜂))) | |
3 | 1, 2 | anbi12i 626 | 1 ⊢ ((if-(𝜑, 𝜒, 𝜏) ∧ if-(𝜓, 𝜃, 𝜂)) ↔ (((¬ 𝜑 ∨ 𝜒) ∧ (𝜑 ∨ 𝜏)) ∧ ((¬ 𝜓 ∨ 𝜃) ∧ (𝜓 ∨ 𝜂)))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 ∧ wa 395 ∨ wo 843 if-wif 1059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ifp 1060 |
This theorem is referenced by: ifpan23 40965 |
Copyright terms: Public domain | W3C validator |