Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzuntgd Structured version   Visualization version   GIF version

Theorem fzuntgd 43561
Description: Union of two adjacent or overlapping finite sets of sequential integers. (Contributed by RP, 14-Dec-2024.)
Hypotheses
Ref Expression
fzuntgd.k (𝜑𝐾 ∈ ℤ)
fzuntgd.l (𝜑𝐿 ∈ ℤ)
fzuntgd.m (𝜑𝑀 ∈ ℤ)
fzuntgd.n (𝜑𝑁 ∈ ℤ)
fzuntgd.km (𝜑𝐾𝑀)
fzuntgd.ml (𝜑𝑀 ≤ (𝐿 + 1))
fzuntgd.ln (𝜑𝐿𝑁)
Assertion
Ref Expression
fzuntgd (𝜑 → ((𝐾...𝐿) ∪ (𝑀...𝑁)) = (𝐾...𝑁))

Proof of Theorem fzuntgd
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 zre 12472 . . . . . 6 (𝑗 ∈ ℤ → 𝑗 ∈ ℝ)
2 simplr 768 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℝ) ∧ 𝑗𝐿) → 𝑗 ∈ ℝ)
3 fzuntgd.l . . . . . . . . . . . 12 (𝜑𝐿 ∈ ℤ)
43zred 12577 . . . . . . . . . . 11 (𝜑𝐿 ∈ ℝ)
54ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℝ) ∧ 𝑗𝐿) → 𝐿 ∈ ℝ)
6 fzuntgd.n . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
76zred 12577 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
87ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℝ) ∧ 𝑗𝐿) → 𝑁 ∈ ℝ)
9 simpr 484 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℝ) ∧ 𝑗𝐿) → 𝑗𝐿)
10 fzuntgd.ln . . . . . . . . . . 11 (𝜑𝐿𝑁)
1110ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℝ) ∧ 𝑗𝐿) → 𝐿𝑁)
122, 5, 8, 9, 11letrd 11270 . . . . . . . . 9 (((𝜑𝑗 ∈ ℝ) ∧ 𝑗𝐿) → 𝑗𝑁)
1312ex 412 . . . . . . . 8 ((𝜑𝑗 ∈ ℝ) → (𝑗𝐿𝑗𝑁))
1413anim2d 612 . . . . . . 7 ((𝜑𝑗 ∈ ℝ) → ((𝐾𝑗𝑗𝐿) → (𝐾𝑗𝑗𝑁)))
15 fzuntgd.k . . . . . . . . . . . 12 (𝜑𝐾 ∈ ℤ)
1615zred 12577 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℝ)
1716ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℝ) ∧ 𝑀𝑗) → 𝐾 ∈ ℝ)
18 fzuntgd.m . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
1918zred 12577 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
2019ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℝ) ∧ 𝑀𝑗) → 𝑀 ∈ ℝ)
21 simplr 768 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℝ) ∧ 𝑀𝑗) → 𝑗 ∈ ℝ)
22 fzuntgd.km . . . . . . . . . . 11 (𝜑𝐾𝑀)
2322ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℝ) ∧ 𝑀𝑗) → 𝐾𝑀)
24 simpr 484 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℝ) ∧ 𝑀𝑗) → 𝑀𝑗)
2517, 20, 21, 23, 24letrd 11270 . . . . . . . . 9 (((𝜑𝑗 ∈ ℝ) ∧ 𝑀𝑗) → 𝐾𝑗)
2625ex 412 . . . . . . . 8 ((𝜑𝑗 ∈ ℝ) → (𝑀𝑗𝐾𝑗))
2726anim1d 611 . . . . . . 7 ((𝜑𝑗 ∈ ℝ) → ((𝑀𝑗𝑗𝑁) → (𝐾𝑗𝑗𝑁)))
2814, 27jaod 859 . . . . . 6 ((𝜑𝑗 ∈ ℝ) → (((𝐾𝑗𝑗𝐿) ∨ (𝑀𝑗𝑗𝑁)) → (𝐾𝑗𝑗𝑁)))
291, 28sylan2 593 . . . . 5 ((𝜑𝑗 ∈ ℤ) → (((𝐾𝑗𝑗𝐿) ∨ (𝑀𝑗𝑗𝑁)) → (𝐾𝑗𝑗𝑁)))
30 orc 867 . . . . . . . . 9 (𝐾𝑗 → (𝐾𝑗𝑀𝑗))
31 orc 867 . . . . . . . . 9 (𝐾𝑗 → (𝐾𝑗𝑗𝑁))
3230, 31jca 511 . . . . . . . 8 (𝐾𝑗 → ((𝐾𝑗𝑀𝑗) ∧ (𝐾𝑗𝑗𝑁)))
3332ad2antrl 728 . . . . . . 7 (((𝜑𝑗 ∈ ℤ) ∧ (𝐾𝑗𝑗𝑁)) → ((𝐾𝑗𝑀𝑗) ∧ (𝐾𝑗𝑗𝑁)))
34 animorrl 982 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℤ) ∧ 𝑗𝐿) → (𝑗𝐿𝑀𝑗))
3519ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℤ) ∧ (𝐿 + 1) ≤ 𝑗) → 𝑀 ∈ ℝ)
36 peano2re 11286 . . . . . . . . . . . . . 14 (𝐿 ∈ ℝ → (𝐿 + 1) ∈ ℝ)
374, 36syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐿 + 1) ∈ ℝ)
3837ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℤ) ∧ (𝐿 + 1) ≤ 𝑗) → (𝐿 + 1) ∈ ℝ)
39 simplr 768 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℤ) ∧ (𝐿 + 1) ≤ 𝑗) → 𝑗 ∈ ℤ)
4039zred 12577 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℤ) ∧ (𝐿 + 1) ≤ 𝑗) → 𝑗 ∈ ℝ)
41 fzuntgd.ml . . . . . . . . . . . . 13 (𝜑𝑀 ≤ (𝐿 + 1))
4241ad2antrr 726 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℤ) ∧ (𝐿 + 1) ≤ 𝑗) → 𝑀 ≤ (𝐿 + 1))
43 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℤ) ∧ (𝐿 + 1) ≤ 𝑗) → (𝐿 + 1) ≤ 𝑗)
4435, 38, 40, 42, 43letrd 11270 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℤ) ∧ (𝐿 + 1) ≤ 𝑗) → 𝑀𝑗)
4544olcd 874 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℤ) ∧ (𝐿 + 1) ≤ 𝑗) → (𝑗𝐿𝑀𝑗))
46 simpr 484 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℤ) → 𝑗 ∈ ℤ)
4746zred 12577 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℤ) → 𝑗 ∈ ℝ)
483adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℤ) → 𝐿 ∈ ℤ)
4948zred 12577 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℤ) → 𝐿 ∈ ℝ)
50 lelttric 11220 . . . . . . . . . . . 12 ((𝑗 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑗𝐿𝐿 < 𝑗))
5147, 49, 50syl2anc 584 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℤ) → (𝑗𝐿𝐿 < 𝑗))
52 zltp1le 12522 . . . . . . . . . . . . 13 ((𝐿 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝐿 < 𝑗 ↔ (𝐿 + 1) ≤ 𝑗))
533, 52sylan 580 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℤ) → (𝐿 < 𝑗 ↔ (𝐿 + 1) ≤ 𝑗))
5453orbi2d 915 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℤ) → ((𝑗𝐿𝐿 < 𝑗) ↔ (𝑗𝐿 ∨ (𝐿 + 1) ≤ 𝑗)))
5551, 54mpbid 232 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℤ) → (𝑗𝐿 ∨ (𝐿 + 1) ≤ 𝑗))
5634, 45, 55mpjaodan 960 . . . . . . . . 9 ((𝜑𝑗 ∈ ℤ) → (𝑗𝐿𝑀𝑗))
5756adantr 480 . . . . . . . 8 (((𝜑𝑗 ∈ ℤ) ∧ (𝐾𝑗𝑗𝑁)) → (𝑗𝐿𝑀𝑗))
58 simprr 772 . . . . . . . . 9 (((𝜑𝑗 ∈ ℤ) ∧ (𝐾𝑗𝑗𝑁)) → 𝑗𝑁)
5958olcd 874 . . . . . . . 8 (((𝜑𝑗 ∈ ℤ) ∧ (𝐾𝑗𝑗𝑁)) → (𝑗𝐿𝑗𝑁))
6057, 59jca 511 . . . . . . 7 (((𝜑𝑗 ∈ ℤ) ∧ (𝐾𝑗𝑗𝑁)) → ((𝑗𝐿𝑀𝑗) ∧ (𝑗𝐿𝑗𝑁)))
61 orddi 1011 . . . . . . 7 (((𝐾𝑗𝑗𝐿) ∨ (𝑀𝑗𝑗𝑁)) ↔ (((𝐾𝑗𝑀𝑗) ∧ (𝐾𝑗𝑗𝑁)) ∧ ((𝑗𝐿𝑀𝑗) ∧ (𝑗𝐿𝑗𝑁))))
6233, 60, 61sylanbrc 583 . . . . . 6 (((𝜑𝑗 ∈ ℤ) ∧ (𝐾𝑗𝑗𝑁)) → ((𝐾𝑗𝑗𝐿) ∨ (𝑀𝑗𝑗𝑁)))
6362ex 412 . . . . 5 ((𝜑𝑗 ∈ ℤ) → ((𝐾𝑗𝑗𝑁) → ((𝐾𝑗𝑗𝐿) ∨ (𝑀𝑗𝑗𝑁))))
6429, 63impbid 212 . . . 4 ((𝜑𝑗 ∈ ℤ) → (((𝐾𝑗𝑗𝐿) ∨ (𝑀𝑗𝑗𝑁)) ↔ (𝐾𝑗𝑗𝑁)))
6564pm5.32da 579 . . 3 (𝜑 → ((𝑗 ∈ ℤ ∧ ((𝐾𝑗𝑗𝐿) ∨ (𝑀𝑗𝑗𝑁))) ↔ (𝑗 ∈ ℤ ∧ (𝐾𝑗𝑗𝑁))))
66 elfz1 13412 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑗 ∈ (𝐾...𝐿) ↔ (𝑗 ∈ ℤ ∧ 𝐾𝑗𝑗𝐿)))
6715, 3, 66syl2anc 584 . . . . . 6 (𝜑 → (𝑗 ∈ (𝐾...𝐿) ↔ (𝑗 ∈ ℤ ∧ 𝐾𝑗𝑗𝐿)))
68 3anass 1094 . . . . . 6 ((𝑗 ∈ ℤ ∧ 𝐾𝑗𝑗𝐿) ↔ (𝑗 ∈ ℤ ∧ (𝐾𝑗𝑗𝐿)))
6967, 68bitrdi 287 . . . . 5 (𝜑 → (𝑗 ∈ (𝐾...𝐿) ↔ (𝑗 ∈ ℤ ∧ (𝐾𝑗𝑗𝐿))))
70 elfz1 13412 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑗 ∈ (𝑀...𝑁) ↔ (𝑗 ∈ ℤ ∧ 𝑀𝑗𝑗𝑁)))
7118, 6, 70syl2anc 584 . . . . . 6 (𝜑 → (𝑗 ∈ (𝑀...𝑁) ↔ (𝑗 ∈ ℤ ∧ 𝑀𝑗𝑗𝑁)))
72 3anass 1094 . . . . . 6 ((𝑗 ∈ ℤ ∧ 𝑀𝑗𝑗𝑁) ↔ (𝑗 ∈ ℤ ∧ (𝑀𝑗𝑗𝑁)))
7371, 72bitrdi 287 . . . . 5 (𝜑 → (𝑗 ∈ (𝑀...𝑁) ↔ (𝑗 ∈ ℤ ∧ (𝑀𝑗𝑗𝑁))))
7469, 73orbi12d 918 . . . 4 (𝜑 → ((𝑗 ∈ (𝐾...𝐿) ∨ 𝑗 ∈ (𝑀...𝑁)) ↔ ((𝑗 ∈ ℤ ∧ (𝐾𝑗𝑗𝐿)) ∨ (𝑗 ∈ ℤ ∧ (𝑀𝑗𝑗𝑁)))))
75 elun 4100 . . . 4 (𝑗 ∈ ((𝐾...𝐿) ∪ (𝑀...𝑁)) ↔ (𝑗 ∈ (𝐾...𝐿) ∨ 𝑗 ∈ (𝑀...𝑁)))
76 andi 1009 . . . 4 ((𝑗 ∈ ℤ ∧ ((𝐾𝑗𝑗𝐿) ∨ (𝑀𝑗𝑗𝑁))) ↔ ((𝑗 ∈ ℤ ∧ (𝐾𝑗𝑗𝐿)) ∨ (𝑗 ∈ ℤ ∧ (𝑀𝑗𝑗𝑁))))
7774, 75, 763bitr4g 314 . . 3 (𝜑 → (𝑗 ∈ ((𝐾...𝐿) ∪ (𝑀...𝑁)) ↔ (𝑗 ∈ ℤ ∧ ((𝐾𝑗𝑗𝐿) ∨ (𝑀𝑗𝑗𝑁)))))
78 elfz1 13412 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑗 ∈ (𝐾...𝑁) ↔ (𝑗 ∈ ℤ ∧ 𝐾𝑗𝑗𝑁)))
7915, 6, 78syl2anc 584 . . . 4 (𝜑 → (𝑗 ∈ (𝐾...𝑁) ↔ (𝑗 ∈ ℤ ∧ 𝐾𝑗𝑗𝑁)))
80 3anass 1094 . . . 4 ((𝑗 ∈ ℤ ∧ 𝐾𝑗𝑗𝑁) ↔ (𝑗 ∈ ℤ ∧ (𝐾𝑗𝑗𝑁)))
8179, 80bitrdi 287 . . 3 (𝜑 → (𝑗 ∈ (𝐾...𝑁) ↔ (𝑗 ∈ ℤ ∧ (𝐾𝑗𝑗𝑁))))
8265, 77, 813bitr4d 311 . 2 (𝜑 → (𝑗 ∈ ((𝐾...𝐿) ∪ (𝑀...𝑁)) ↔ 𝑗 ∈ (𝐾...𝑁)))
8382eqrdv 2729 1 (𝜑 → ((𝐾...𝐿) ∪ (𝑀...𝑁)) = (𝐾...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2111  cun 3895   class class class wbr 5089  (class class class)co 7346  cr 11005  1c1 11007   + caddc 11009   < clt 11146  cle 11147  cz 12468  ...cfz 13407
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-n0 12382  df-z 12469  df-fz 13408
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator