Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fzuntgd Structured version   Visualization version   GIF version

Theorem fzuntgd 42919
Description: Union of two adjacent or overlapping finite sets of sequential integers. (Contributed by RP, 14-Dec-2024.)
Hypotheses
Ref Expression
fzuntgd.k (𝜑𝐾 ∈ ℤ)
fzuntgd.l (𝜑𝐿 ∈ ℤ)
fzuntgd.m (𝜑𝑀 ∈ ℤ)
fzuntgd.n (𝜑𝑁 ∈ ℤ)
fzuntgd.km (𝜑𝐾𝑀)
fzuntgd.ml (𝜑𝑀 ≤ (𝐿 + 1))
fzuntgd.ln (𝜑𝐿𝑁)
Assertion
Ref Expression
fzuntgd (𝜑 → ((𝐾...𝐿) ∪ (𝑀...𝑁)) = (𝐾...𝑁))

Proof of Theorem fzuntgd
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 zre 12600 . . . . . 6 (𝑗 ∈ ℤ → 𝑗 ∈ ℝ)
2 simplr 767 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℝ) ∧ 𝑗𝐿) → 𝑗 ∈ ℝ)
3 fzuntgd.l . . . . . . . . . . . 12 (𝜑𝐿 ∈ ℤ)
43zred 12704 . . . . . . . . . . 11 (𝜑𝐿 ∈ ℝ)
54ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℝ) ∧ 𝑗𝐿) → 𝐿 ∈ ℝ)
6 fzuntgd.n . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
76zred 12704 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
87ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℝ) ∧ 𝑗𝐿) → 𝑁 ∈ ℝ)
9 simpr 483 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℝ) ∧ 𝑗𝐿) → 𝑗𝐿)
10 fzuntgd.ln . . . . . . . . . . 11 (𝜑𝐿𝑁)
1110ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℝ) ∧ 𝑗𝐿) → 𝐿𝑁)
122, 5, 8, 9, 11letrd 11409 . . . . . . . . 9 (((𝜑𝑗 ∈ ℝ) ∧ 𝑗𝐿) → 𝑗𝑁)
1312ex 411 . . . . . . . 8 ((𝜑𝑗 ∈ ℝ) → (𝑗𝐿𝑗𝑁))
1413anim2d 610 . . . . . . 7 ((𝜑𝑗 ∈ ℝ) → ((𝐾𝑗𝑗𝐿) → (𝐾𝑗𝑗𝑁)))
15 fzuntgd.k . . . . . . . . . . . 12 (𝜑𝐾 ∈ ℤ)
1615zred 12704 . . . . . . . . . . 11 (𝜑𝐾 ∈ ℝ)
1716ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℝ) ∧ 𝑀𝑗) → 𝐾 ∈ ℝ)
18 fzuntgd.m . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
1918zred 12704 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
2019ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℝ) ∧ 𝑀𝑗) → 𝑀 ∈ ℝ)
21 simplr 767 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℝ) ∧ 𝑀𝑗) → 𝑗 ∈ ℝ)
22 fzuntgd.km . . . . . . . . . . 11 (𝜑𝐾𝑀)
2322ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℝ) ∧ 𝑀𝑗) → 𝐾𝑀)
24 simpr 483 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℝ) ∧ 𝑀𝑗) → 𝑀𝑗)
2517, 20, 21, 23, 24letrd 11409 . . . . . . . . 9 (((𝜑𝑗 ∈ ℝ) ∧ 𝑀𝑗) → 𝐾𝑗)
2625ex 411 . . . . . . . 8 ((𝜑𝑗 ∈ ℝ) → (𝑀𝑗𝐾𝑗))
2726anim1d 609 . . . . . . 7 ((𝜑𝑗 ∈ ℝ) → ((𝑀𝑗𝑗𝑁) → (𝐾𝑗𝑗𝑁)))
2814, 27jaod 857 . . . . . 6 ((𝜑𝑗 ∈ ℝ) → (((𝐾𝑗𝑗𝐿) ∨ (𝑀𝑗𝑗𝑁)) → (𝐾𝑗𝑗𝑁)))
291, 28sylan2 591 . . . . 5 ((𝜑𝑗 ∈ ℤ) → (((𝐾𝑗𝑗𝐿) ∨ (𝑀𝑗𝑗𝑁)) → (𝐾𝑗𝑗𝑁)))
30 orc 865 . . . . . . . . 9 (𝐾𝑗 → (𝐾𝑗𝑀𝑗))
31 orc 865 . . . . . . . . 9 (𝐾𝑗 → (𝐾𝑗𝑗𝑁))
3230, 31jca 510 . . . . . . . 8 (𝐾𝑗 → ((𝐾𝑗𝑀𝑗) ∧ (𝐾𝑗𝑗𝑁)))
3332ad2antrl 726 . . . . . . 7 (((𝜑𝑗 ∈ ℤ) ∧ (𝐾𝑗𝑗𝑁)) → ((𝐾𝑗𝑀𝑗) ∧ (𝐾𝑗𝑗𝑁)))
34 animorrl 978 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℤ) ∧ 𝑗𝐿) → (𝑗𝐿𝑀𝑗))
3519ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℤ) ∧ (𝐿 + 1) ≤ 𝑗) → 𝑀 ∈ ℝ)
36 peano2re 11425 . . . . . . . . . . . . . 14 (𝐿 ∈ ℝ → (𝐿 + 1) ∈ ℝ)
374, 36syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝐿 + 1) ∈ ℝ)
3837ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℤ) ∧ (𝐿 + 1) ≤ 𝑗) → (𝐿 + 1) ∈ ℝ)
39 simplr 767 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℤ) ∧ (𝐿 + 1) ≤ 𝑗) → 𝑗 ∈ ℤ)
4039zred 12704 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℤ) ∧ (𝐿 + 1) ≤ 𝑗) → 𝑗 ∈ ℝ)
41 fzuntgd.ml . . . . . . . . . . . . 13 (𝜑𝑀 ≤ (𝐿 + 1))
4241ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℤ) ∧ (𝐿 + 1) ≤ 𝑗) → 𝑀 ≤ (𝐿 + 1))
43 simpr 483 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℤ) ∧ (𝐿 + 1) ≤ 𝑗) → (𝐿 + 1) ≤ 𝑗)
4435, 38, 40, 42, 43letrd 11409 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℤ) ∧ (𝐿 + 1) ≤ 𝑗) → 𝑀𝑗)
4544olcd 872 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℤ) ∧ (𝐿 + 1) ≤ 𝑗) → (𝑗𝐿𝑀𝑗))
46 simpr 483 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℤ) → 𝑗 ∈ ℤ)
4746zred 12704 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℤ) → 𝑗 ∈ ℝ)
483adantr 479 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ℤ) → 𝐿 ∈ ℤ)
4948zred 12704 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℤ) → 𝐿 ∈ ℝ)
50 lelttric 11359 . . . . . . . . . . . 12 ((𝑗 ∈ ℝ ∧ 𝐿 ∈ ℝ) → (𝑗𝐿𝐿 < 𝑗))
5147, 49, 50syl2anc 582 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℤ) → (𝑗𝐿𝐿 < 𝑗))
52 zltp1le 12650 . . . . . . . . . . . . 13 ((𝐿 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝐿 < 𝑗 ↔ (𝐿 + 1) ≤ 𝑗))
533, 52sylan 578 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ℤ) → (𝐿 < 𝑗 ↔ (𝐿 + 1) ≤ 𝑗))
5453orbi2d 913 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ℤ) → ((𝑗𝐿𝐿 < 𝑗) ↔ (𝑗𝐿 ∨ (𝐿 + 1) ≤ 𝑗)))
5551, 54mpbid 231 . . . . . . . . . 10 ((𝜑𝑗 ∈ ℤ) → (𝑗𝐿 ∨ (𝐿 + 1) ≤ 𝑗))
5634, 45, 55mpjaodan 956 . . . . . . . . 9 ((𝜑𝑗 ∈ ℤ) → (𝑗𝐿𝑀𝑗))
5756adantr 479 . . . . . . . 8 (((𝜑𝑗 ∈ ℤ) ∧ (𝐾𝑗𝑗𝑁)) → (𝑗𝐿𝑀𝑗))
58 simprr 771 . . . . . . . . 9 (((𝜑𝑗 ∈ ℤ) ∧ (𝐾𝑗𝑗𝑁)) → 𝑗𝑁)
5958olcd 872 . . . . . . . 8 (((𝜑𝑗 ∈ ℤ) ∧ (𝐾𝑗𝑗𝑁)) → (𝑗𝐿𝑗𝑁))
6057, 59jca 510 . . . . . . 7 (((𝜑𝑗 ∈ ℤ) ∧ (𝐾𝑗𝑗𝑁)) → ((𝑗𝐿𝑀𝑗) ∧ (𝑗𝐿𝑗𝑁)))
61 orddi 1007 . . . . . . 7 (((𝐾𝑗𝑗𝐿) ∨ (𝑀𝑗𝑗𝑁)) ↔ (((𝐾𝑗𝑀𝑗) ∧ (𝐾𝑗𝑗𝑁)) ∧ ((𝑗𝐿𝑀𝑗) ∧ (𝑗𝐿𝑗𝑁))))
6233, 60, 61sylanbrc 581 . . . . . 6 (((𝜑𝑗 ∈ ℤ) ∧ (𝐾𝑗𝑗𝑁)) → ((𝐾𝑗𝑗𝐿) ∨ (𝑀𝑗𝑗𝑁)))
6362ex 411 . . . . 5 ((𝜑𝑗 ∈ ℤ) → ((𝐾𝑗𝑗𝑁) → ((𝐾𝑗𝑗𝐿) ∨ (𝑀𝑗𝑗𝑁))))
6429, 63impbid 211 . . . 4 ((𝜑𝑗 ∈ ℤ) → (((𝐾𝑗𝑗𝐿) ∨ (𝑀𝑗𝑗𝑁)) ↔ (𝐾𝑗𝑗𝑁)))
6564pm5.32da 577 . . 3 (𝜑 → ((𝑗 ∈ ℤ ∧ ((𝐾𝑗𝑗𝐿) ∨ (𝑀𝑗𝑗𝑁))) ↔ (𝑗 ∈ ℤ ∧ (𝐾𝑗𝑗𝑁))))
66 elfz1 13529 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑗 ∈ (𝐾...𝐿) ↔ (𝑗 ∈ ℤ ∧ 𝐾𝑗𝑗𝐿)))
6715, 3, 66syl2anc 582 . . . . . 6 (𝜑 → (𝑗 ∈ (𝐾...𝐿) ↔ (𝑗 ∈ ℤ ∧ 𝐾𝑗𝑗𝐿)))
68 3anass 1092 . . . . . 6 ((𝑗 ∈ ℤ ∧ 𝐾𝑗𝑗𝐿) ↔ (𝑗 ∈ ℤ ∧ (𝐾𝑗𝑗𝐿)))
6967, 68bitrdi 286 . . . . 5 (𝜑 → (𝑗 ∈ (𝐾...𝐿) ↔ (𝑗 ∈ ℤ ∧ (𝐾𝑗𝑗𝐿))))
70 elfz1 13529 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑗 ∈ (𝑀...𝑁) ↔ (𝑗 ∈ ℤ ∧ 𝑀𝑗𝑗𝑁)))
7118, 6, 70syl2anc 582 . . . . . 6 (𝜑 → (𝑗 ∈ (𝑀...𝑁) ↔ (𝑗 ∈ ℤ ∧ 𝑀𝑗𝑗𝑁)))
72 3anass 1092 . . . . . 6 ((𝑗 ∈ ℤ ∧ 𝑀𝑗𝑗𝑁) ↔ (𝑗 ∈ ℤ ∧ (𝑀𝑗𝑗𝑁)))
7371, 72bitrdi 286 . . . . 5 (𝜑 → (𝑗 ∈ (𝑀...𝑁) ↔ (𝑗 ∈ ℤ ∧ (𝑀𝑗𝑗𝑁))))
7469, 73orbi12d 916 . . . 4 (𝜑 → ((𝑗 ∈ (𝐾...𝐿) ∨ 𝑗 ∈ (𝑀...𝑁)) ↔ ((𝑗 ∈ ℤ ∧ (𝐾𝑗𝑗𝐿)) ∨ (𝑗 ∈ ℤ ∧ (𝑀𝑗𝑗𝑁)))))
75 elun 4149 . . . 4 (𝑗 ∈ ((𝐾...𝐿) ∪ (𝑀...𝑁)) ↔ (𝑗 ∈ (𝐾...𝐿) ∨ 𝑗 ∈ (𝑀...𝑁)))
76 andi 1005 . . . 4 ((𝑗 ∈ ℤ ∧ ((𝐾𝑗𝑗𝐿) ∨ (𝑀𝑗𝑗𝑁))) ↔ ((𝑗 ∈ ℤ ∧ (𝐾𝑗𝑗𝐿)) ∨ (𝑗 ∈ ℤ ∧ (𝑀𝑗𝑗𝑁))))
7774, 75, 763bitr4g 313 . . 3 (𝜑 → (𝑗 ∈ ((𝐾...𝐿) ∪ (𝑀...𝑁)) ↔ (𝑗 ∈ ℤ ∧ ((𝐾𝑗𝑗𝐿) ∨ (𝑀𝑗𝑗𝑁)))))
78 elfz1 13529 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑗 ∈ (𝐾...𝑁) ↔ (𝑗 ∈ ℤ ∧ 𝐾𝑗𝑗𝑁)))
7915, 6, 78syl2anc 582 . . . 4 (𝜑 → (𝑗 ∈ (𝐾...𝑁) ↔ (𝑗 ∈ ℤ ∧ 𝐾𝑗𝑗𝑁)))
80 3anass 1092 . . . 4 ((𝑗 ∈ ℤ ∧ 𝐾𝑗𝑗𝑁) ↔ (𝑗 ∈ ℤ ∧ (𝐾𝑗𝑗𝑁)))
8179, 80bitrdi 286 . . 3 (𝜑 → (𝑗 ∈ (𝐾...𝑁) ↔ (𝑗 ∈ ℤ ∧ (𝐾𝑗𝑗𝑁))))
8265, 77, 813bitr4d 310 . 2 (𝜑 → (𝑗 ∈ ((𝐾...𝐿) ∪ (𝑀...𝑁)) ↔ 𝑗 ∈ (𝐾...𝑁)))
8382eqrdv 2726 1 (𝜑 → ((𝐾...𝐿) ∪ (𝑀...𝑁)) = (𝐾...𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  wo 845  w3a 1084   = wceq 1533  wcel 2098  cun 3947   class class class wbr 5152  (class class class)co 7426  cr 11145  1c1 11147   + caddc 11149   < clt 11286  cle 11287  cz 12596  ...cfz 13524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-2nd 8000  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-er 8731  df-en 8971  df-dom 8972  df-sdom 8973  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-n0 12511  df-z 12597  df-fz 13525
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator