MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfifp4 Structured version   Visualization version   GIF version

Theorem dfifp4 1093
Description: Alternate definition of the conditional operator for propositions. (Contributed by BJ, 30-Sep-2019.)
Assertion
Ref Expression
dfifp4 (if-(𝜑, 𝜓, 𝜒) ↔ ((¬ 𝜑𝜓) ∧ (𝜑𝜒)))

Proof of Theorem dfifp4
StepHypRef Expression
1 dfifp3 1092 . 2 (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∧ (𝜑𝜒)))
2 imor 884 . . 3 ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
32anbi1i 617 . 2 (((𝜑𝜓) ∧ (𝜑𝜒)) ↔ ((¬ 𝜑𝜓) ∧ (𝜑𝜒)))
41, 3bitri 267 1 (if-(𝜑, 𝜓, 𝜒) ↔ ((¬ 𝜑𝜓) ∧ (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wo 878  if-wif 1089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-ifp 1090
This theorem is referenced by:  anifp  1097  ifpan123g  38638  ifpan23  38639  ifpdfor2  38640  ifpdfor  38644  ifpim1  38648  ifpnot  38649  ifpid2  38650  ifpim2  38651  ifpnot23  38658  ifpidg  38671  ifpim123g  38680  ifpimim  38689
  Copyright terms: Public domain W3C validator