MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfifp4 Structured version   Visualization version   GIF version

Theorem dfifp4 1067
Description: Alternate definition of the conditional operator for propositions. (Contributed by BJ, 30-Sep-2019.)
Assertion
Ref Expression
dfifp4 (if-(𝜑, 𝜓, 𝜒) ↔ ((¬ 𝜑𝜓) ∧ (𝜑𝜒)))

Proof of Theorem dfifp4
StepHypRef Expression
1 dfifp3 1066 . 2 (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑𝜓) ∧ (𝜑𝜒)))
2 imor 852 . 2 ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
31, 2bianbi 626 1 (if-(𝜑, 𝜓, 𝜒) ↔ ((¬ 𝜑𝜓) ∧ (𝜑𝜒)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846  if-wif 1063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ifp 1064
This theorem is referenced by:  anifp  1072  ifpan123g  43421  ifpan23  43422  ifpdfor2  43423  ifpdfor  43427  ifpim1  43431  ifpnot  43432  ifpid2  43433  ifpim2  43434  ifpnot23  43440  ifpidg  43453  ifpim123g  43462  ifpimim  43471
  Copyright terms: Public domain W3C validator