![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfifp4 | Structured version Visualization version GIF version |
Description: Alternate definition of the conditional operator for propositions. (Contributed by BJ, 30-Sep-2019.) |
Ref | Expression |
---|---|
dfifp4 | ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((¬ 𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfifp3 1065 | . 2 ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑 → 𝜓) ∧ (𝜑 ∨ 𝜒))) | |
2 | imor 853 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (¬ 𝜑 ∨ 𝜓)) | |
3 | 1, 2 | bianbi 627 | 1 ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((¬ 𝜑 ∨ 𝜓) ∧ (𝜑 ∨ 𝜒))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 847 if-wif 1062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 |
This theorem is referenced by: anifp 1071 ifpan123g 43449 ifpan23 43450 ifpdfor2 43451 ifpdfor 43455 ifpim1 43459 ifpnot 43460 ifpid2 43461 ifpim2 43462 ifpnot23 43468 ifpidg 43481 ifpim123g 43490 ifpimim 43499 |
Copyright terms: Public domain | W3C validator |