| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpancor | Structured version Visualization version GIF version | ||
| Description: Corollary of commutation of and. (Contributed by RP, 25-Apr-2020.) |
| Ref | Expression |
|---|---|
| ifpancor | ⊢ (if-(𝜑, 𝜓, 𝜑) ↔ if-(𝜓, 𝜑, 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 460 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
| 2 | ifpdfan2 43476 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ if-(𝜑, 𝜓, 𝜑)) | |
| 3 | ifpdfan2 43476 | . 2 ⊢ ((𝜓 ∧ 𝜑) ↔ if-(𝜓, 𝜑, 𝜓)) | |
| 4 | 1, 2, 3 | 3bitr3i 301 | 1 ⊢ (if-(𝜑, 𝜓, 𝜑) ↔ if-(𝜓, 𝜑, 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 if-wif 1063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ifp 1064 |
| This theorem is referenced by: ifpnancor 43494 |
| Copyright terms: Public domain | W3C validator |