Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpancor | Structured version Visualization version GIF version |
Description: Corollary of commutation of and. (Contributed by RP, 25-Apr-2020.) |
Ref | Expression |
---|---|
ifpancor | ⊢ (if-(𝜑, 𝜓, 𝜑) ↔ if-(𝜓, 𝜑, 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 465 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ (𝜓 ∧ 𝜑)) | |
2 | ifpdfan2 40534 | . 2 ⊢ ((𝜑 ∧ 𝜓) ↔ if-(𝜑, 𝜓, 𝜑)) | |
3 | ifpdfan2 40534 | . 2 ⊢ ((𝜓 ∧ 𝜑) ↔ if-(𝜓, 𝜑, 𝜓)) | |
4 | 1, 2, 3 | 3bitr3i 305 | 1 ⊢ (if-(𝜑, 𝜓, 𝜑) ↔ if-(𝜓, 𝜑, 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 400 if-wif 1059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-ifp 1060 |
This theorem is referenced by: ifpnancor 40552 |
Copyright terms: Public domain | W3C validator |