Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifpdfor Structured version   Visualization version   GIF version

Theorem ifpdfor 39695
Description: Define or in terms of conditional logic operator and true. (Contributed by RP, 20-Apr-2020.)
Assertion
Ref Expression
ifpdfor ((𝜑𝜓) ↔ if-(𝜑, ⊤, 𝜓))

Proof of Theorem ifpdfor
StepHypRef Expression
1 tru 1534 . . . 4
21olci 862 . . 3 𝜑 ∨ ⊤)
32biantrur 531 . 2 ((𝜑𝜓) ↔ ((¬ 𝜑 ∨ ⊤) ∧ (𝜑𝜓)))
4 dfifp4 1060 . 2 (if-(𝜑, ⊤, 𝜓) ↔ ((¬ 𝜑 ∨ ⊤) ∧ (𝜑𝜓)))
53, 4bitr4i 279 1 ((𝜑𝜓) ↔ if-(𝜑, ⊤, 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 207  wa 396  wo 843  if-wif 1056  wtru 1531
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-ifp 1057  df-tru 1533
This theorem is referenced by:  ifpdfxor  39718
  Copyright terms: Public domain W3C validator