| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpnancor | Structured version Visualization version GIF version | ||
| Description: Corollary of commutation of and. (Contributed by RP, 25-Apr-2020.) |
| Ref | Expression |
|---|---|
| ifpnancor | ⊢ (if-(𝜑, ¬ 𝜓, ¬ 𝜑) ↔ if-(𝜓, ¬ 𝜑, ¬ 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifpancor 43477 | . . 3 ⊢ (if-(𝜑, 𝜓, 𝜑) ↔ if-(𝜓, 𝜑, 𝜓)) | |
| 2 | 1 | notbii 320 | . 2 ⊢ (¬ if-(𝜑, 𝜓, 𝜑) ↔ ¬ if-(𝜓, 𝜑, 𝜓)) |
| 3 | ifpnot23 43491 | . 2 ⊢ (¬ if-(𝜑, 𝜓, 𝜑) ↔ if-(𝜑, ¬ 𝜓, ¬ 𝜑)) | |
| 4 | ifpnot23 43491 | . 2 ⊢ (¬ if-(𝜓, 𝜑, 𝜓) ↔ if-(𝜓, ¬ 𝜑, ¬ 𝜓)) | |
| 5 | 2, 3, 4 | 3bitr3i 301 | 1 ⊢ (if-(𝜑, ¬ 𝜓, ¬ 𝜑) ↔ if-(𝜓, ¬ 𝜑, ¬ 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 if-wif 1063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ifp 1064 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |