Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifpnancor Structured version   Visualization version   GIF version

Theorem ifpnancor 41088
Description: Corollary of commutation of and. (Contributed by RP, 25-Apr-2020.)
Assertion
Ref Expression
ifpnancor (if-(𝜑, ¬ 𝜓, ¬ 𝜑) ↔ if-(𝜓, ¬ 𝜑, ¬ 𝜓))

Proof of Theorem ifpnancor
StepHypRef Expression
1 ifpancor 41071 . . 3 (if-(𝜑, 𝜓, 𝜑) ↔ if-(𝜓, 𝜑, 𝜓))
21notbii 320 . 2 (¬ if-(𝜑, 𝜓, 𝜑) ↔ ¬ if-(𝜓, 𝜑, 𝜓))
3 ifpnot23 41085 . 2 (¬ if-(𝜑, 𝜓, 𝜑) ↔ if-(𝜑, ¬ 𝜓, ¬ 𝜑))
4 ifpnot23 41085 . 2 (¬ if-(𝜓, 𝜑, 𝜓) ↔ if-(𝜓, ¬ 𝜑, ¬ 𝜓))
52, 3, 43bitr3i 301 1 (if-(𝜑, ¬ 𝜓, ¬ 𝜑) ↔ if-(𝜓, ¬ 𝜑, ¬ 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  if-wif 1060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator