Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpnancor | Structured version Visualization version GIF version |
Description: Corollary of commutation of and. (Contributed by RP, 25-Apr-2020.) |
Ref | Expression |
---|---|
ifpnancor | ⊢ (if-(𝜑, ¬ 𝜓, ¬ 𝜑) ↔ if-(𝜓, ¬ 𝜑, ¬ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifpancor 41071 | . . 3 ⊢ (if-(𝜑, 𝜓, 𝜑) ↔ if-(𝜓, 𝜑, 𝜓)) | |
2 | 1 | notbii 320 | . 2 ⊢ (¬ if-(𝜑, 𝜓, 𝜑) ↔ ¬ if-(𝜓, 𝜑, 𝜓)) |
3 | ifpnot23 41085 | . 2 ⊢ (¬ if-(𝜑, 𝜓, 𝜑) ↔ if-(𝜑, ¬ 𝜓, ¬ 𝜑)) | |
4 | ifpnot23 41085 | . 2 ⊢ (¬ if-(𝜓, 𝜑, 𝜓) ↔ if-(𝜓, ¬ 𝜑, ¬ 𝜓)) | |
5 | 2, 3, 4 | 3bitr3i 301 | 1 ⊢ (if-(𝜑, ¬ 𝜓, ¬ 𝜑) ↔ if-(𝜓, ¬ 𝜑, ¬ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 if-wif 1060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |