Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifpbi123 Structured version   Visualization version   GIF version

Theorem ifpbi123 41097
Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 15-Apr-2020.)
Assertion
Ref Expression
ifpbi123 (((𝜑𝜓) ∧ (𝜒𝜃) ∧ (𝜏𝜂)) → (if-(𝜑, 𝜒, 𝜏) ↔ if-(𝜓, 𝜃, 𝜂)))

Proof of Theorem ifpbi123
StepHypRef Expression
1 simp1 1135 . 2 (((𝜑𝜓) ∧ (𝜒𝜃) ∧ (𝜏𝜂)) → (𝜑𝜓))
2 simp2 1136 . 2 (((𝜑𝜓) ∧ (𝜒𝜃) ∧ (𝜏𝜂)) → (𝜒𝜃))
3 simp3 1137 . 2 (((𝜑𝜓) ∧ (𝜒𝜃) ∧ (𝜏𝜂)) → (𝜏𝜂))
41, 2, 3ifpbi123d 1077 1 (((𝜑𝜓) ∧ (𝜒𝜃) ∧ (𝜏𝜂)) → (if-(𝜑, 𝜒, 𝜏) ↔ if-(𝜓, 𝜃, 𝜂)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  if-wif 1060  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3an 1088
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator