Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpbi123 | Structured version Visualization version GIF version |
Description: Equivalence theorem for conditional logical operators. (Contributed by RP, 15-Apr-2020.) |
Ref | Expression |
---|---|
ifpbi123 | ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃) ∧ (𝜏 ↔ 𝜂)) → (if-(𝜑, 𝜒, 𝜏) ↔ if-(𝜓, 𝜃, 𝜂))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1138 | . 2 ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃) ∧ (𝜏 ↔ 𝜂)) → (𝜑 ↔ 𝜓)) | |
2 | simp2 1139 | . 2 ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃) ∧ (𝜏 ↔ 𝜂)) → (𝜒 ↔ 𝜃)) | |
3 | simp3 1140 | . 2 ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃) ∧ (𝜏 ↔ 𝜂)) → (𝜏 ↔ 𝜂)) | |
4 | 1, 2, 3 | ifpbi123d 1080 | 1 ⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃) ∧ (𝜏 ↔ 𝜂)) → (if-(𝜑, 𝜒, 𝜏) ↔ if-(𝜓, 𝜃, 𝜂))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 if-wif 1063 ∧ w3a 1089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-ifp 1064 df-3an 1091 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |