Proof of Theorem ifpbi13
Step | Hyp | Ref
| Expression |
1 | | simpl 482 |
. . . 4
⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)) → (𝜑 ↔ 𝜓)) |
2 | 1 | imbi1d 341 |
. . 3
⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)) → ((𝜑 → 𝜏) ↔ (𝜓 → 𝜏))) |
3 | | notbi 318 |
. . . . 5
⊢ ((𝜑 ↔ 𝜓) ↔ (¬ 𝜑 ↔ ¬ 𝜓)) |
4 | | imbi12 346 |
. . . . 5
⊢ ((¬
𝜑 ↔ ¬ 𝜓) → ((𝜒 ↔ 𝜃) → ((¬ 𝜑 → 𝜒) ↔ (¬ 𝜓 → 𝜃)))) |
5 | 3, 4 | sylbi 216 |
. . . 4
⊢ ((𝜑 ↔ 𝜓) → ((𝜒 ↔ 𝜃) → ((¬ 𝜑 → 𝜒) ↔ (¬ 𝜓 → 𝜃)))) |
6 | 5 | imp 406 |
. . 3
⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)) → ((¬ 𝜑 → 𝜒) ↔ (¬ 𝜓 → 𝜃))) |
7 | 2, 6 | anbi12d 630 |
. 2
⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)) → (((𝜑 → 𝜏) ∧ (¬ 𝜑 → 𝜒)) ↔ ((𝜓 → 𝜏) ∧ (¬ 𝜓 → 𝜃)))) |
8 | | dfifp2 1061 |
. 2
⊢
(if-(𝜑, 𝜏, 𝜒) ↔ ((𝜑 → 𝜏) ∧ (¬ 𝜑 → 𝜒))) |
9 | | dfifp2 1061 |
. 2
⊢
(if-(𝜓, 𝜏, 𝜃) ↔ ((𝜓 → 𝜏) ∧ (¬ 𝜓 → 𝜃))) |
10 | 7, 8, 9 | 3bitr4g 313 |
1
⊢ (((𝜑 ↔ 𝜓) ∧ (𝜒 ↔ 𝜃)) → (if-(𝜑, 𝜏, 𝜒) ↔ if-(𝜓, 𝜏, 𝜃))) |