MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ifpbi123d Structured version   Visualization version   GIF version

Theorem ifpbi123d 1076
Description: Equivalence deduction for conditional operator for propositions. (Contributed by AV, 30-Dec-2020.) (Proof shortened by Wolf Lammen, 17-Apr-2024.)
Hypotheses
Ref Expression
ifpbi123d.1 (𝜑 → (𝜓𝜏))
ifpbi123d.2 (𝜑 → (𝜒𝜂))
ifpbi123d.3 (𝜑 → (𝜃𝜁))
Assertion
Ref Expression
ifpbi123d (𝜑 → (if-(𝜓, 𝜒, 𝜃) ↔ if-(𝜏, 𝜂, 𝜁)))

Proof of Theorem ifpbi123d
StepHypRef Expression
1 ifpbi123d.1 . . . 4 (𝜑 → (𝜓𝜏))
2 ifpbi123d.2 . . . 4 (𝜑 → (𝜒𝜂))
31, 2imbi12d 344 . . 3 (𝜑 → ((𝜓𝜒) ↔ (𝜏𝜂)))
4 ifpbi123d.3 . . . 4 (𝜑 → (𝜃𝜁))
51, 4orbi12d 915 . . 3 (𝜑 → ((𝜓𝜃) ↔ (𝜏𝜁)))
63, 5anbi12d 630 . 2 (𝜑 → (((𝜓𝜒) ∧ (𝜓𝜃)) ↔ ((𝜏𝜂) ∧ (𝜏𝜁))))
7 dfifp3 1062 . 2 (if-(𝜓, 𝜒, 𝜃) ↔ ((𝜓𝜒) ∧ (𝜓𝜃)))
8 dfifp3 1062 . 2 (if-(𝜏, 𝜂, 𝜁) ↔ ((𝜏𝜂) ∧ (𝜏𝜁)))
96, 7, 83bitr4g 313 1 (𝜑 → (if-(𝜓, 𝜒, 𝜃) ↔ if-(𝜏, 𝜂, 𝜁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 843  if-wif 1059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060
This theorem is referenced by:  ifpbi23d  1078  wkslem1  27877  wkslem2  27878  iswlk  27880  wlkres  27940  redwlk  27942  wlkp1lem8  27950  crctcshwlkn0lem4  28079  crctcshwlkn0lem5  28080  crctcshwlkn0lem6  28081  1wlkdlem4  28405  pfxwlk  32985  satfv1fvfmla1  33285  ifpbi123  40995
  Copyright terms: Public domain W3C validator