| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ifpbi123d | Structured version Visualization version GIF version | ||
| Description: Equivalence deduction for conditional operator for propositions. (Contributed by AV, 30-Dec-2020.) (Proof shortened by Wolf Lammen, 17-Apr-2024.) |
| Ref | Expression |
|---|---|
| ifpbi123d.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜏)) |
| ifpbi123d.2 | ⊢ (𝜑 → (𝜒 ↔ 𝜂)) |
| ifpbi123d.3 | ⊢ (𝜑 → (𝜃 ↔ 𝜁)) |
| Ref | Expression |
|---|---|
| ifpbi123d | ⊢ (𝜑 → (if-(𝜓, 𝜒, 𝜃) ↔ if-(𝜏, 𝜂, 𝜁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifpbi123d.1 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜏)) | |
| 2 | ifpbi123d.2 | . . . 4 ⊢ (𝜑 → (𝜒 ↔ 𝜂)) | |
| 3 | 1, 2 | imbi12d 344 | . . 3 ⊢ (𝜑 → ((𝜓 → 𝜒) ↔ (𝜏 → 𝜂))) |
| 4 | ifpbi123d.3 | . . . 4 ⊢ (𝜑 → (𝜃 ↔ 𝜁)) | |
| 5 | 1, 4 | orbi12d 919 | . . 3 ⊢ (𝜑 → ((𝜓 ∨ 𝜃) ↔ (𝜏 ∨ 𝜁))) |
| 6 | 3, 5 | anbi12d 632 | . 2 ⊢ (𝜑 → (((𝜓 → 𝜒) ∧ (𝜓 ∨ 𝜃)) ↔ ((𝜏 → 𝜂) ∧ (𝜏 ∨ 𝜁)))) |
| 7 | dfifp3 1066 | . 2 ⊢ (if-(𝜓, 𝜒, 𝜃) ↔ ((𝜓 → 𝜒) ∧ (𝜓 ∨ 𝜃))) | |
| 8 | dfifp3 1066 | . 2 ⊢ (if-(𝜏, 𝜂, 𝜁) ↔ ((𝜏 → 𝜂) ∧ (𝜏 ∨ 𝜁))) | |
| 9 | 6, 7, 8 | 3bitr4g 314 | 1 ⊢ (𝜑 → (if-(𝜓, 𝜒, 𝜃) ↔ if-(𝜏, 𝜂, 𝜁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∨ wo 848 if-wif 1063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ifp 1064 |
| This theorem is referenced by: ifpbi23d 1080 wkslem1 29625 wkslem2 29626 iswlk 29628 wlkres 29688 redwlk 29690 wlkp1lem8 29698 crctcshwlkn0lem4 29833 crctcshwlkn0lem5 29834 crctcshwlkn0lem6 29835 1wlkdlem4 30159 pfxwlk 35129 satfv1fvfmla1 35428 ifpbi123 43503 |
| Copyright terms: Public domain | W3C validator |