Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifpbiidcor2 Structured version   Visualization version   GIF version

Theorem ifpbiidcor2 41090
Description: Restatement of biid 260. (Contributed by RP, 25-Apr-2020.)
Assertion
Ref Expression
ifpbiidcor2 ¬ if-(𝜑, ¬ 𝜑, 𝜑)

Proof of Theorem ifpbiidcor2
StepHypRef Expression
1 ifpbiidcor 41081 . 2 if-(𝜑, 𝜑, ¬ 𝜑)
2 ifpnot23b 41089 . 2 (¬ if-(𝜑, ¬ 𝜑, 𝜑) ↔ if-(𝜑, 𝜑, ¬ 𝜑))
31, 2mpbir 230 1 ¬ if-(𝜑, ¬ 𝜑, 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  if-wif 1060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator