| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpbiidcor2 | Structured version Visualization version GIF version | ||
| Description: Restatement of biid 261. (Contributed by RP, 25-Apr-2020.) |
| Ref | Expression |
|---|---|
| ifpbiidcor2 | ⊢ ¬ if-(𝜑, ¬ 𝜑, 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifpbiidcor 43425 | . 2 ⊢ if-(𝜑, 𝜑, ¬ 𝜑) | |
| 2 | ifpnot23b 43433 | . 2 ⊢ (¬ if-(𝜑, ¬ 𝜑, 𝜑) ↔ if-(𝜑, 𝜑, ¬ 𝜑)) | |
| 3 | 1, 2 | mpbir 231 | 1 ⊢ ¬ if-(𝜑, ¬ 𝜑, 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 if-wif 1062 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |