Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpbiidcor2 | Structured version Visualization version GIF version |
Description: Restatement of biid 264. (Contributed by RP, 25-Apr-2020.) |
Ref | Expression |
---|---|
ifpbiidcor2 | ⊢ ¬ if-(𝜑, ¬ 𝜑, 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifpbiidcor 40766 | . 2 ⊢ if-(𝜑, 𝜑, ¬ 𝜑) | |
2 | ifpnot23b 40774 | . 2 ⊢ (¬ if-(𝜑, ¬ 𝜑, 𝜑) ↔ if-(𝜑, 𝜑, ¬ 𝜑)) | |
3 | 1, 2 | mpbir 234 | 1 ⊢ ¬ if-(𝜑, ¬ 𝜑, 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 if-wif 1063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-ifp 1064 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |