| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpnot23c | Structured version Visualization version GIF version | ||
| Description: Negation of conditional logical operator. (Contributed by RP, 25-Apr-2020.) |
| Ref | Expression |
|---|---|
| ifpnot23c | ⊢ (¬ if-(𝜑, 𝜓, ¬ 𝜒) ↔ if-(𝜑, ¬ 𝜓, 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifpnot23 43436 | . 2 ⊢ (¬ if-(𝜑, 𝜓, ¬ 𝜒) ↔ if-(𝜑, ¬ 𝜓, ¬ ¬ 𝜒)) | |
| 2 | notnotb 315 | . . 3 ⊢ (𝜒 ↔ ¬ ¬ 𝜒) | |
| 3 | ifpbi3 43426 | . . 3 ⊢ ((𝜒 ↔ ¬ ¬ 𝜒) → (if-(𝜑, ¬ 𝜓, 𝜒) ↔ if-(𝜑, ¬ 𝜓, ¬ ¬ 𝜒))) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (if-(𝜑, ¬ 𝜓, 𝜒) ↔ if-(𝜑, ¬ 𝜓, ¬ ¬ 𝜒)) |
| 5 | 1, 4 | bitr4i 278 | 1 ⊢ (¬ if-(𝜑, 𝜓, ¬ 𝜒) ↔ if-(𝜑, ¬ 𝜓, 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 if-wif 1062 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 |
| This theorem is referenced by: ifpnim1 43455 ifpnim2 43457 |
| Copyright terms: Public domain | W3C validator |