Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpnot23c | Structured version Visualization version GIF version |
Description: Negation of conditional logical operator. (Contributed by RP, 25-Apr-2020.) |
Ref | Expression |
---|---|
ifpnot23c | ⊢ (¬ if-(𝜑, 𝜓, ¬ 𝜒) ↔ if-(𝜑, ¬ 𝜓, 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifpnot23 41047 | . 2 ⊢ (¬ if-(𝜑, 𝜓, ¬ 𝜒) ↔ if-(𝜑, ¬ 𝜓, ¬ ¬ 𝜒)) | |
2 | notnotb 314 | . . 3 ⊢ (𝜒 ↔ ¬ ¬ 𝜒) | |
3 | ifpbi3 41037 | . . 3 ⊢ ((𝜒 ↔ ¬ ¬ 𝜒) → (if-(𝜑, ¬ 𝜓, 𝜒) ↔ if-(𝜑, ¬ 𝜓, ¬ ¬ 𝜒))) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (if-(𝜑, ¬ 𝜓, 𝜒) ↔ if-(𝜑, ¬ 𝜓, ¬ ¬ 𝜒)) |
5 | 1, 4 | bitr4i 277 | 1 ⊢ (¬ if-(𝜑, 𝜓, ¬ 𝜒) ↔ if-(𝜑, ¬ 𝜓, 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 if-wif 1059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ifp 1060 |
This theorem is referenced by: ifpnim1 41066 ifpnim2 41068 |
Copyright terms: Public domain | W3C validator |