|   | Mathbox for Richard Penner | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpnot23b | Structured version Visualization version GIF version | ||
| Description: Negation of conditional logical operator. (Contributed by RP, 25-Apr-2020.) | 
| Ref | Expression | 
|---|---|
| ifpnot23b | ⊢ (¬ if-(𝜑, ¬ 𝜓, 𝜒) ↔ if-(𝜑, 𝜓, ¬ 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ifpnot23 43491 | . 2 ⊢ (¬ if-(𝜑, ¬ 𝜓, 𝜒) ↔ if-(𝜑, ¬ ¬ 𝜓, ¬ 𝜒)) | |
| 2 | notnotb 315 | . . 3 ⊢ (𝜓 ↔ ¬ ¬ 𝜓) | |
| 3 | ifpbi2 43480 | . . 3 ⊢ ((𝜓 ↔ ¬ ¬ 𝜓) → (if-(𝜑, 𝜓, ¬ 𝜒) ↔ if-(𝜑, ¬ ¬ 𝜓, ¬ 𝜒))) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ (if-(𝜑, 𝜓, ¬ 𝜒) ↔ if-(𝜑, ¬ ¬ 𝜓, ¬ 𝜒)) | 
| 5 | 1, 4 | bitr4i 278 | 1 ⊢ (¬ if-(𝜑, ¬ 𝜓, 𝜒) ↔ if-(𝜑, 𝜓, ¬ 𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ¬ wn 3 ↔ wb 206 if-wif 1063 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ifp 1064 | 
| This theorem is referenced by: ifpbiidcor2 43496 | 
| Copyright terms: Public domain | W3C validator |