Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifpbiidcor Structured version   Visualization version   GIF version

Theorem ifpbiidcor 40035
Description: Restatement of biid 264. (Contributed by RP, 25-Apr-2020.)
Assertion
Ref Expression
ifpbiidcor if-(𝜑, 𝜑, ¬ 𝜑)

Proof of Theorem ifpbiidcor
StepHypRef Expression
1 biid 264 . 2 (𝜑𝜑)
2 ifpdfbi 1066 . 2 ((𝜑𝜑) ↔ if-(𝜑, 𝜑, ¬ 𝜑))
31, 2mpbi 233 1 if-(𝜑, 𝜑, ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 209  if-wif 1058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-ifp 1059
This theorem is referenced by:  ifpbiidcor2  40044
  Copyright terms: Public domain W3C validator