Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifpnim2 Structured version   Visualization version   GIF version

Theorem ifpnim2 41004
Description: Restate negated implication as conditional logic operator. (Contributed by RP, 25-Apr-2020.)
Assertion
Ref Expression
ifpnim2 (¬ (𝜑𝜓) ↔ if-(𝜓, ¬ 𝜓, 𝜑))

Proof of Theorem ifpnim2
StepHypRef Expression
1 ifpnot23c 40989 . 2 (¬ if-(𝜓, 𝜓, ¬ 𝜑) ↔ if-(𝜓, ¬ 𝜓, 𝜑))
2 ifpim4 41003 . 2 ((𝜑𝜓) ↔ if-(𝜓, 𝜓, ¬ 𝜑))
31, 2xchnxbir 332 1 (¬ (𝜑𝜓) ↔ if-(𝜓, ¬ 𝜓, 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  if-wif 1059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator