| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xchnxbir | Structured version Visualization version GIF version | ||
| Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
| Ref | Expression |
|---|---|
| xchnxbir.1 | ⊢ (¬ 𝜑 ↔ 𝜓) |
| xchnxbir.2 | ⊢ (𝜒 ↔ 𝜑) |
| Ref | Expression |
|---|---|
| xchnxbir | ⊢ (¬ 𝜒 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xchnxbir.1 | . 2 ⊢ (¬ 𝜑 ↔ 𝜓) | |
| 2 | xchnxbir.2 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
| 3 | 2 | bicomi 224 | . 2 ⊢ (𝜑 ↔ 𝜒) |
| 4 | 1, 3 | xchnxbi 332 | 1 ⊢ (¬ 𝜒 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: 3ioran 1105 3ianor 1106 hadnot 1602 cadnot 1615 2exanali 1860 nabbib 3028 nelb 3211 nsspssun 4227 undif3 4259 2nreu 4403 intirr 6079 ordtri3or 6352 nf1const 7261 nf1oconst 7262 frxp 8082 ressuppssdif 8141 suppofssd 8159 naddcllem 8617 domunfican 9248 ssfin4 10239 prinfzo0 13635 swrdnnn0nd 14597 swrdnd0 14598 lcmfunsnlem2lem1 16584 ncoprmlnprm 16674 prm23ge5 16762 smndex2dnrinv 18824 symgfix2 19330 gsumdixp 20239 cnfldfun 21310 cnfldfunOLD 21323 symgmatr01lem 22573 ppttop 22927 zclmncvs 25081 mdegleb 26002 2lgslem3 27348 trlsegvdeg 30206 strlem1 32229 difrab2 32477 isarchi 33151 bnj1189 34992 dfacycgr1 35124 fmlasucdisj 35379 dfon3 35873 wl-3xornot 37462 poimirlem18 37625 poimirlem21 37628 poimirlem30 37637 poimirlem31 37638 ftc1anclem3 37682 hdmaplem4 41761 mapdh9a 41776 onsupmaxb 43221 dflim5 43311 faosnf0.11b 43409 ifpnot23 43460 ifpdfxor 43469 ifpnim1 43479 ifpnim2 43481 dfsucon 43505 ntrneineine1lem 44066 disjrnmpt2 45175 aiotavb 47084 dfatprc 47124 ndmafv2nrn 47216 nfunsnafv2 47219 oddneven 47638 usgrexmpl2trifr 48021 |
| Copyright terms: Public domain | W3C validator |