![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xchnxbir | Structured version Visualization version GIF version |
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
Ref | Expression |
---|---|
xchnxbir.1 | ⊢ (¬ 𝜑 ↔ 𝜓) |
xchnxbir.2 | ⊢ (𝜒 ↔ 𝜑) |
Ref | Expression |
---|---|
xchnxbir | ⊢ (¬ 𝜒 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xchnxbir.1 | . 2 ⊢ (¬ 𝜑 ↔ 𝜓) | |
2 | xchnxbir.2 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
3 | 2 | bicomi 216 | . 2 ⊢ (𝜑 ↔ 𝜒) |
4 | 1, 3 | xchnxbi 324 | 1 ⊢ (¬ 𝜒 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 198 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 |
This theorem is referenced by: 3ioran 1135 3ianor 1136 hadnot 1715 cadnot 1728 nsspssun 4089 undif3 4120 intirr 5760 ordtri3or 5999 frxp 7556 ressuppssdif 7585 domunfican 8508 ssfin4 9454 prinfzo0 12809 swrdnnn0nd 13728 swrdnd0 13729 lcmfunsnlem2lem1 15731 ncoprmlnprm 15814 prm23ge5 15898 symgfix2 18193 gsumdixp 18970 cnfldfunALT 20126 symgmatr01lem 20835 ppttop 21189 zclmncvs 23324 mdegleb 24230 2lgslem3 25549 trlsegvdeg 27600 strlem1 29660 isarchi 30277 bnj1189 31619 dfon3 32533 poimirlem18 33970 poimirlem21 33973 poimirlem30 33982 poimirlem31 33983 ftc1anclem3 34029 hdmaplem4 37848 mapdh9a 37863 ifpnot23 38664 ifpdfxor 38673 ifpnim1 38683 ifpnim2 38685 relintabex 38727 ntrneineine1lem 39221 2exanali 39426 aiotavb 41985 dfatprc 42030 ndmafv2nrn 42122 nfunsnafv2 42125 oddneven 42405 |
Copyright terms: Public domain | W3C validator |