| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xchnxbir | Structured version Visualization version GIF version | ||
| Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
| Ref | Expression |
|---|---|
| xchnxbir.1 | ⊢ (¬ 𝜑 ↔ 𝜓) |
| xchnxbir.2 | ⊢ (𝜒 ↔ 𝜑) |
| Ref | Expression |
|---|---|
| xchnxbir | ⊢ (¬ 𝜒 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xchnxbir.1 | . 2 ⊢ (¬ 𝜑 ↔ 𝜓) | |
| 2 | xchnxbir.2 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
| 3 | 2 | bicomi 224 | . 2 ⊢ (𝜑 ↔ 𝜒) |
| 4 | 1, 3 | xchnxbi 332 | 1 ⊢ (¬ 𝜒 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: 3ioran 1105 3ianor 1106 hadnot 1603 cadnot 1616 2exanali 1861 nabbib 3031 nelb 3208 nsspssun 4215 undif3 4247 2nreu 4391 intirr 6064 ordtri3or 6338 nf1const 7238 nf1oconst 7239 frxp 8056 ressuppssdif 8115 suppofssd 8133 naddcllem 8591 domunfican 9206 ssfin4 10201 prinfzo0 13598 swrdnnn0nd 14564 swrdnd0 14565 lcmfunsnlem2lem1 16549 ncoprmlnprm 16639 prm23ge5 16727 smndex2dnrinv 18823 symgfix2 19328 gsumdixp 20237 cnfldfun 21305 cnfldfunOLD 21318 symgmatr01lem 22568 ppttop 22922 zclmncvs 25075 mdegleb 25996 2lgslem3 27342 trlsegvdeg 30207 strlem1 32230 difrab2 32477 isarchi 33151 bnj1189 35021 dfacycgr1 35188 fmlasucdisj 35443 dfon3 35934 wl-3xornot 37525 poimirlem18 37688 poimirlem21 37691 poimirlem30 37700 poimirlem31 37701 ftc1anclem3 37745 hdmaplem4 41883 mapdh9a 41898 onsupmaxb 43342 dflim5 43432 faosnf0.11b 43530 ifpnot23 43581 ifpdfxor 43590 ifpnim1 43600 ifpnim2 43602 dfsucon 43626 ntrneineine1lem 44187 disjrnmpt2 45295 aiotavb 47200 dfatprc 47240 ndmafv2nrn 47332 nfunsnafv2 47335 oddneven 47754 usgrexmpl2trifr 48147 |
| Copyright terms: Public domain | W3C validator |