| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xchnxbir | Structured version Visualization version GIF version | ||
| Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
| Ref | Expression |
|---|---|
| xchnxbir.1 | ⊢ (¬ 𝜑 ↔ 𝜓) |
| xchnxbir.2 | ⊢ (𝜒 ↔ 𝜑) |
| Ref | Expression |
|---|---|
| xchnxbir | ⊢ (¬ 𝜒 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xchnxbir.1 | . 2 ⊢ (¬ 𝜑 ↔ 𝜓) | |
| 2 | xchnxbir.2 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
| 3 | 2 | bicomi 224 | . 2 ⊢ (𝜑 ↔ 𝜒) |
| 4 | 1, 3 | xchnxbi 332 | 1 ⊢ (¬ 𝜒 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: 3ioran 1105 3ianor 1106 hadnot 1602 cadnot 1615 2exanali 1860 nabbib 3035 nelb 3218 nsspssun 4243 undif3 4275 2nreu 4419 intirr 6107 ordtri3or 6384 nf1const 7296 nf1oconst 7297 frxp 8123 ressuppssdif 8182 suppofssd 8200 naddcllem 8686 domunfican 9331 ssfin4 10322 prinfzo0 13713 swrdnnn0nd 14672 swrdnd0 14673 lcmfunsnlem2lem1 16655 ncoprmlnprm 16745 prm23ge5 16833 smndex2dnrinv 18891 symgfix2 19395 gsumdixp 20277 cnfldfun 21327 cnfldfunOLD 21340 symgmatr01lem 22589 ppttop 22943 zclmncvs 25098 mdegleb 26019 2lgslem3 27365 trlsegvdeg 30154 strlem1 32177 difrab2 32425 isarchi 33126 bnj1189 34986 dfacycgr1 35112 fmlasucdisj 35367 dfon3 35856 wl-3xornot 37445 poimirlem18 37608 poimirlem21 37611 poimirlem30 37620 poimirlem31 37621 ftc1anclem3 37665 hdmaplem4 41739 mapdh9a 41754 onsupmaxb 43210 dflim5 43300 faosnf0.11b 43398 ifpnot23 43449 ifpdfxor 43458 ifpnim1 43468 ifpnim2 43470 dfsucon 43494 ntrneineine1lem 44055 disjrnmpt2 45160 aiotavb 47067 dfatprc 47107 ndmafv2nrn 47199 nfunsnafv2 47202 oddneven 47606 usgrexmpl2trifr 47989 |
| Copyright terms: Public domain | W3C validator |