Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xchnxbir | Structured version Visualization version GIF version |
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
Ref | Expression |
---|---|
xchnxbir.1 | ⊢ (¬ 𝜑 ↔ 𝜓) |
xchnxbir.2 | ⊢ (𝜒 ↔ 𝜑) |
Ref | Expression |
---|---|
xchnxbir | ⊢ (¬ 𝜒 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xchnxbir.1 | . 2 ⊢ (¬ 𝜑 ↔ 𝜓) | |
2 | xchnxbir.2 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
3 | 2 | bicomi 223 | . 2 ⊢ (𝜑 ↔ 𝜒) |
4 | 1, 3 | xchnxbi 332 | 1 ⊢ (¬ 𝜒 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: 3ioran 1105 3ianor 1106 hadnot 1604 cadnot 1617 2exanali 1863 nelb 3195 nsspssun 4191 undif3 4224 2nreu 4375 intirr 6023 ordtri3or 6298 nf1const 7176 nf1oconst 7177 frxp 7967 ressuppssdif 8001 suppofssd 8019 domunfican 9087 ssfin4 10066 prinfzo0 13426 swrdnnn0nd 14369 swrdnd0 14370 lcmfunsnlem2lem1 16343 ncoprmlnprm 16432 prm23ge5 16516 smndex2dnrinv 18554 symgfix2 19024 gsumdixp 19848 cnfldfun 20609 symgmatr01lem 21802 ppttop 22157 zclmncvs 24312 mdegleb 25229 2lgslem3 26552 trlsegvdeg 28591 strlem1 30612 difrab2 30845 isarchi 31436 bnj1189 32989 dfacycgr1 33106 fmlasucdisj 33361 xpord3pred 33798 naddcllem 33831 dfon3 34194 wl-3xornot 35652 poimirlem18 35795 poimirlem21 35798 poimirlem30 35807 poimirlem31 35808 ftc1anclem3 35852 hdmaplem4 39788 mapdh9a 39803 ifpnot23 41085 ifpdfxor 41094 ifpnim1 41104 ifpnim2 41106 dfsucon 41130 ntrneineine1lem 41694 disjrnmpt2 42726 aiotavb 44582 dfatprc 44622 ndmafv2nrn 44714 nfunsnafv2 44717 oddneven 45096 |
Copyright terms: Public domain | W3C validator |