![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xchnxbir | Structured version Visualization version GIF version |
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
Ref | Expression |
---|---|
xchnxbir.1 | ⊢ (¬ 𝜑 ↔ 𝜓) |
xchnxbir.2 | ⊢ (𝜒 ↔ 𝜑) |
Ref | Expression |
---|---|
xchnxbir | ⊢ (¬ 𝜒 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xchnxbir.1 | . 2 ⊢ (¬ 𝜑 ↔ 𝜓) | |
2 | xchnxbir.2 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
3 | 2 | bicomi 223 | . 2 ⊢ (𝜑 ↔ 𝜒) |
4 | 1, 3 | xchnxbi 332 | 1 ⊢ (¬ 𝜒 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: 3ioran 1107 3ianor 1108 hadnot 1604 cadnot 1617 2exanali 1864 nabbib 3046 nelb 3232 nsspssun 4258 undif3 4291 2nreu 4442 intirr 6120 ordtri3or 6397 nf1const 7302 nf1oconst 7303 frxp 8112 ressuppssdif 8170 suppofssd 8188 naddcllem 8675 domunfican 9320 ssfin4 10305 prinfzo0 13671 swrdnnn0nd 14606 swrdnd0 14607 lcmfunsnlem2lem1 16575 ncoprmlnprm 16664 prm23ge5 16748 smndex2dnrinv 18796 symgfix2 19284 gsumdixp 20131 cnfldfun 20956 symgmatr01lem 22155 ppttop 22510 zclmncvs 24665 mdegleb 25582 2lgslem3 26907 trlsegvdeg 29480 strlem1 31503 difrab2 31738 isarchi 32328 bnj1189 34020 dfacycgr1 34135 fmlasucdisj 34390 dfon3 34864 wl-3xornot 36362 poimirlem18 36506 poimirlem21 36509 poimirlem30 36518 poimirlem31 36519 ftc1anclem3 36563 hdmaplem4 40645 mapdh9a 40660 onsupmaxb 41988 dflim5 42079 faosnf0.11b 42178 ifpnot23 42229 ifpdfxor 42238 ifpnim1 42248 ifpnim2 42250 dfsucon 42274 ntrneineine1lem 42835 disjrnmpt2 43886 aiotavb 45798 dfatprc 45838 ndmafv2nrn 45930 nfunsnafv2 45933 oddneven 46312 |
Copyright terms: Public domain | W3C validator |