![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xchnxbir | Structured version Visualization version GIF version |
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
Ref | Expression |
---|---|
xchnxbir.1 | ⊢ (¬ 𝜑 ↔ 𝜓) |
xchnxbir.2 | ⊢ (𝜒 ↔ 𝜑) |
Ref | Expression |
---|---|
xchnxbir | ⊢ (¬ 𝜒 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xchnxbir.1 | . 2 ⊢ (¬ 𝜑 ↔ 𝜓) | |
2 | xchnxbir.2 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
3 | 2 | bicomi 224 | . 2 ⊢ (𝜑 ↔ 𝜒) |
4 | 1, 3 | xchnxbi 332 | 1 ⊢ (¬ 𝜒 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: 3ioran 1106 3ianor 1107 hadnot 1599 cadnot 1612 2exanali 1859 nabbib 3051 nelb 3240 nsspssun 4287 undif3 4319 2nreu 4467 intirr 6150 ordtri3or 6427 nf1const 7340 nf1oconst 7341 frxp 8167 ressuppssdif 8226 suppofssd 8244 naddcllem 8732 domunfican 9389 ssfin4 10379 prinfzo0 13755 swrdnnn0nd 14704 swrdnd0 14705 lcmfunsnlem2lem1 16685 ncoprmlnprm 16775 prm23ge5 16862 smndex2dnrinv 18950 symgfix2 19458 gsumdixp 20342 cnfldfun 21401 cnfldfunOLD 21414 symgmatr01lem 22680 ppttop 23035 zclmncvs 25201 mdegleb 26123 2lgslem3 27466 trlsegvdeg 30259 strlem1 32282 difrab2 32526 isarchi 33162 bnj1189 34985 dfacycgr1 35112 fmlasucdisj 35367 dfon3 35856 wl-3xornot 37447 poimirlem18 37598 poimirlem21 37601 poimirlem30 37610 poimirlem31 37611 ftc1anclem3 37655 hdmaplem4 41731 mapdh9a 41746 onsupmaxb 43200 dflim5 43291 faosnf0.11b 43389 ifpnot23 43440 ifpdfxor 43449 ifpnim1 43459 ifpnim2 43461 dfsucon 43485 ntrneineine1lem 44046 disjrnmpt2 45095 aiotavb 47005 dfatprc 47045 ndmafv2nrn 47137 nfunsnafv2 47140 oddneven 47518 usgrexmpl2trifr 47852 |
Copyright terms: Public domain | W3C validator |