| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xchnxbir | Structured version Visualization version GIF version | ||
| Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
| Ref | Expression |
|---|---|
| xchnxbir.1 | ⊢ (¬ 𝜑 ↔ 𝜓) |
| xchnxbir.2 | ⊢ (𝜒 ↔ 𝜑) |
| Ref | Expression |
|---|---|
| xchnxbir | ⊢ (¬ 𝜒 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xchnxbir.1 | . 2 ⊢ (¬ 𝜑 ↔ 𝜓) | |
| 2 | xchnxbir.2 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
| 3 | 2 | bicomi 224 | . 2 ⊢ (𝜑 ↔ 𝜒) |
| 4 | 1, 3 | xchnxbi 332 | 1 ⊢ (¬ 𝜒 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: 3ioran 1105 3ianor 1106 hadnot 1602 cadnot 1615 2exanali 1860 nabbib 3029 nelb 3214 nsspssun 4234 undif3 4266 2nreu 4410 intirr 6094 ordtri3or 6367 nf1const 7282 nf1oconst 7283 frxp 8108 ressuppssdif 8167 suppofssd 8185 naddcllem 8643 domunfican 9279 ssfin4 10270 prinfzo0 13666 swrdnnn0nd 14628 swrdnd0 14629 lcmfunsnlem2lem1 16615 ncoprmlnprm 16705 prm23ge5 16793 smndex2dnrinv 18849 symgfix2 19353 gsumdixp 20235 cnfldfun 21285 cnfldfunOLD 21298 symgmatr01lem 22547 ppttop 22901 zclmncvs 25055 mdegleb 25976 2lgslem3 27322 trlsegvdeg 30163 strlem1 32186 difrab2 32434 isarchi 33143 bnj1189 35006 dfacycgr1 35138 fmlasucdisj 35393 dfon3 35887 wl-3xornot 37476 poimirlem18 37639 poimirlem21 37642 poimirlem30 37651 poimirlem31 37652 ftc1anclem3 37696 hdmaplem4 41775 mapdh9a 41790 onsupmaxb 43235 dflim5 43325 faosnf0.11b 43423 ifpnot23 43474 ifpdfxor 43483 ifpnim1 43493 ifpnim2 43495 dfsucon 43519 ntrneineine1lem 44080 disjrnmpt2 45189 aiotavb 47095 dfatprc 47135 ndmafv2nrn 47227 nfunsnafv2 47230 oddneven 47649 usgrexmpl2trifr 48032 |
| Copyright terms: Public domain | W3C validator |