![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xchnxbir | Structured version Visualization version GIF version |
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
Ref | Expression |
---|---|
xchnxbir.1 | ⊢ (¬ 𝜑 ↔ 𝜓) |
xchnxbir.2 | ⊢ (𝜒 ↔ 𝜑) |
Ref | Expression |
---|---|
xchnxbir | ⊢ (¬ 𝜒 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xchnxbir.1 | . 2 ⊢ (¬ 𝜑 ↔ 𝜓) | |
2 | xchnxbir.2 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
3 | 2 | bicomi 224 | . 2 ⊢ (𝜑 ↔ 𝜒) |
4 | 1, 3 | xchnxbi 332 | 1 ⊢ (¬ 𝜒 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: 3ioran 1105 3ianor 1106 hadnot 1598 cadnot 1611 2exanali 1857 nabbib 3042 nelb 3231 nsspssun 4273 undif3 4305 2nreu 4449 intirr 6140 ordtri3or 6417 nf1const 7323 nf1oconst 7324 frxp 8149 ressuppssdif 8208 suppofssd 8226 naddcllem 8712 domunfican 9358 ssfin4 10347 prinfzo0 13734 swrdnnn0nd 14690 swrdnd0 14691 lcmfunsnlem2lem1 16671 ncoprmlnprm 16761 prm23ge5 16848 smndex2dnrinv 18940 symgfix2 19448 gsumdixp 20332 cnfldfun 21395 cnfldfunOLD 21408 symgmatr01lem 22674 ppttop 23029 zclmncvs 25195 mdegleb 26117 2lgslem3 27462 trlsegvdeg 30255 strlem1 32278 difrab2 32525 isarchi 33171 bnj1189 35001 dfacycgr1 35128 fmlasucdisj 35383 dfon3 35873 wl-3xornot 37463 poimirlem18 37624 poimirlem21 37627 poimirlem30 37636 poimirlem31 37637 ftc1anclem3 37681 hdmaplem4 41756 mapdh9a 41771 onsupmaxb 43227 dflim5 43318 faosnf0.11b 43416 ifpnot23 43467 ifpdfxor 43476 ifpnim1 43486 ifpnim2 43488 dfsucon 43512 ntrneineine1lem 44073 disjrnmpt2 45130 aiotavb 47039 dfatprc 47079 ndmafv2nrn 47171 nfunsnafv2 47174 oddneven 47568 usgrexmpl2trifr 47931 |
Copyright terms: Public domain | W3C validator |