| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xchnxbir | Structured version Visualization version GIF version | ||
| Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
| Ref | Expression |
|---|---|
| xchnxbir.1 | ⊢ (¬ 𝜑 ↔ 𝜓) |
| xchnxbir.2 | ⊢ (𝜒 ↔ 𝜑) |
| Ref | Expression |
|---|---|
| xchnxbir | ⊢ (¬ 𝜒 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xchnxbir.1 | . 2 ⊢ (¬ 𝜑 ↔ 𝜓) | |
| 2 | xchnxbir.2 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
| 3 | 2 | bicomi 224 | . 2 ⊢ (𝜑 ↔ 𝜒) |
| 4 | 1, 3 | xchnxbi 332 | 1 ⊢ (¬ 𝜒 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: 3ioran 1105 3ianor 1106 hadnot 1602 cadnot 1615 2exanali 1860 nabbib 3028 nelb 3205 nsspssun 4219 undif3 4251 2nreu 4395 intirr 6067 ordtri3or 6339 nf1const 7241 nf1oconst 7242 frxp 8059 ressuppssdif 8118 suppofssd 8136 naddcllem 8594 domunfican 9211 ssfin4 10204 prinfzo0 13601 swrdnnn0nd 14563 swrdnd0 14564 lcmfunsnlem2lem1 16549 ncoprmlnprm 16639 prm23ge5 16727 smndex2dnrinv 18789 symgfix2 19295 gsumdixp 20204 cnfldfun 21275 cnfldfunOLD 21288 symgmatr01lem 22538 ppttop 22892 zclmncvs 25046 mdegleb 25967 2lgslem3 27313 trlsegvdeg 30171 strlem1 32194 difrab2 32442 isarchi 33125 bnj1189 34982 dfacycgr1 35127 fmlasucdisj 35382 dfon3 35876 wl-3xornot 37465 poimirlem18 37628 poimirlem21 37631 poimirlem30 37640 poimirlem31 37641 ftc1anclem3 37685 hdmaplem4 41763 mapdh9a 41778 onsupmaxb 43222 dflim5 43312 faosnf0.11b 43410 ifpnot23 43461 ifpdfxor 43470 ifpnim1 43480 ifpnim2 43482 dfsucon 43506 ntrneineine1lem 44067 disjrnmpt2 45176 aiotavb 47084 dfatprc 47124 ndmafv2nrn 47216 nfunsnafv2 47219 oddneven 47638 usgrexmpl2trifr 48031 |
| Copyright terms: Public domain | W3C validator |