![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xchnxbir | Structured version Visualization version GIF version |
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
Ref | Expression |
---|---|
xchnxbir.1 | ⊢ (¬ 𝜑 ↔ 𝜓) |
xchnxbir.2 | ⊢ (𝜒 ↔ 𝜑) |
Ref | Expression |
---|---|
xchnxbir | ⊢ (¬ 𝜒 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xchnxbir.1 | . 2 ⊢ (¬ 𝜑 ↔ 𝜓) | |
2 | xchnxbir.2 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
3 | 2 | bicomi 223 | . 2 ⊢ (𝜑 ↔ 𝜒) |
4 | 1, 3 | xchnxbi 331 | 1 ⊢ (¬ 𝜒 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: 3ioran 1104 3ianor 1105 hadnot 1601 cadnot 1614 2exanali 1861 nabbib 3043 nelb 3229 nsspssun 4256 undif3 4289 2nreu 4440 intirr 6118 ordtri3or 6395 nf1const 7304 nf1oconst 7305 frxp 8114 ressuppssdif 8172 suppofssd 8190 naddcllem 8677 domunfican 9322 ssfin4 10307 prinfzo0 13675 swrdnnn0nd 14610 swrdnd0 14611 lcmfunsnlem2lem1 16579 ncoprmlnprm 16668 prm23ge5 16752 smndex2dnrinv 18832 symgfix2 19325 gsumdixp 20207 cnfldfun 21156 symgmatr01lem 22375 ppttop 22730 zclmncvs 24896 mdegleb 25817 2lgslem3 27143 trlsegvdeg 29747 strlem1 31770 difrab2 32005 isarchi 32598 bnj1189 34318 dfacycgr1 34433 fmlasucdisj 34688 dfon3 35168 gg-cnfldfun 35483 wl-3xornot 36665 poimirlem18 36809 poimirlem21 36812 poimirlem30 36821 poimirlem31 36822 ftc1anclem3 36866 hdmaplem4 40948 mapdh9a 40963 onsupmaxb 42290 dflim5 42381 faosnf0.11b 42480 ifpnot23 42531 ifpdfxor 42540 ifpnim1 42550 ifpnim2 42552 dfsucon 42576 ntrneineine1lem 43137 disjrnmpt2 44185 aiotavb 46096 dfatprc 46136 ndmafv2nrn 46228 nfunsnafv2 46231 oddneven 46610 |
Copyright terms: Public domain | W3C validator |