![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xchnxbir | Structured version Visualization version GIF version |
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
Ref | Expression |
---|---|
xchnxbir.1 | ⊢ (¬ 𝜑 ↔ 𝜓) |
xchnxbir.2 | ⊢ (𝜒 ↔ 𝜑) |
Ref | Expression |
---|---|
xchnxbir | ⊢ (¬ 𝜒 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xchnxbir.1 | . 2 ⊢ (¬ 𝜑 ↔ 𝜓) | |
2 | xchnxbir.2 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
3 | 2 | bicomi 223 | . 2 ⊢ (𝜑 ↔ 𝜒) |
4 | 1, 3 | xchnxbi 331 | 1 ⊢ (¬ 𝜒 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: 3ioran 1106 3ianor 1107 hadnot 1603 cadnot 1616 2exanali 1863 nabbib 3045 nelb 3231 nsspssun 4257 undif3 4290 2nreu 4441 intirr 6119 ordtri3or 6396 nf1const 7301 nf1oconst 7302 frxp 8111 ressuppssdif 8169 suppofssd 8187 naddcllem 8674 domunfican 9319 ssfin4 10304 prinfzo0 13670 swrdnnn0nd 14605 swrdnd0 14606 lcmfunsnlem2lem1 16574 ncoprmlnprm 16663 prm23ge5 16747 smndex2dnrinv 18795 symgfix2 19283 gsumdixp 20130 cnfldfun 20955 symgmatr01lem 22154 ppttop 22509 zclmncvs 24664 mdegleb 25581 2lgslem3 26904 trlsegvdeg 29477 strlem1 31498 difrab2 31733 isarchi 32323 bnj1189 34015 dfacycgr1 34130 fmlasucdisj 34385 dfon3 34859 wl-3xornot 36357 poimirlem18 36501 poimirlem21 36504 poimirlem30 36513 poimirlem31 36514 ftc1anclem3 36558 hdmaplem4 40640 mapdh9a 40655 onsupmaxb 41978 dflim5 42069 faosnf0.11b 42168 ifpnot23 42219 ifpdfxor 42228 ifpnim1 42238 ifpnim2 42240 dfsucon 42264 ntrneineine1lem 42825 disjrnmpt2 43876 aiotavb 45788 dfatprc 45828 ndmafv2nrn 45920 nfunsnafv2 45923 oddneven 46302 |
Copyright terms: Public domain | W3C validator |