MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xchnxbir Structured version   Visualization version   GIF version

Theorem xchnxbir 332
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.)
Hypotheses
Ref Expression
xchnxbir.1 𝜑𝜓)
xchnxbir.2 (𝜒𝜑)
Assertion
Ref Expression
xchnxbir 𝜒𝜓)

Proof of Theorem xchnxbir
StepHypRef Expression
1 xchnxbir.1 . 2 𝜑𝜓)
2 xchnxbir.2 . . 3 (𝜒𝜑)
32bicomi 223 . 2 (𝜑𝜒)
41, 3xchnxbi 331 1 𝜒𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206
This theorem is referenced by:  3ioran  1104  3ianor  1105  hadnot  1605  cadnot  1618  2exanali  1864  nelb  3194  nsspssun  4188  undif3  4221  2nreu  4372  intirr  6012  ordtri3or  6283  nf1const  7156  nf1oconst  7157  frxp  7938  ressuppssdif  7972  suppofssd  7990  domunfican  9017  ssfin4  9997  prinfzo0  13354  swrdnnn0nd  14297  swrdnd0  14298  lcmfunsnlem2lem1  16271  ncoprmlnprm  16360  prm23ge5  16444  smndex2dnrinv  18469  symgfix2  18939  gsumdixp  19763  cnfldfunALT  20523  symgmatr01lem  21710  ppttop  22065  zclmncvs  24217  mdegleb  25134  2lgslem3  26457  trlsegvdeg  28492  strlem1  30513  difrab2  30746  isarchi  31338  bnj1189  32889  dfacycgr1  33006  fmlasucdisj  33261  xpord3pred  33725  naddcllem  33758  dfon3  34121  wl-3xornot  35579  poimirlem18  35722  poimirlem21  35725  poimirlem30  35734  poimirlem31  35735  ftc1anclem3  35779  hdmaplem4  39715  mapdh9a  39730  ifpnot23  40983  ifpdfxor  40992  ifpnim1  41002  ifpnim2  41004  dfsucon  41028  ntrneineine1lem  41583  disjrnmpt2  42615  aiotavb  44469  dfatprc  44509  ndmafv2nrn  44601  nfunsnafv2  44604  oddneven  44984
  Copyright terms: Public domain W3C validator