Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xchnxbir | Structured version Visualization version GIF version |
Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
Ref | Expression |
---|---|
xchnxbir.1 | ⊢ (¬ 𝜑 ↔ 𝜓) |
xchnxbir.2 | ⊢ (𝜒 ↔ 𝜑) |
Ref | Expression |
---|---|
xchnxbir | ⊢ (¬ 𝜒 ↔ 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xchnxbir.1 | . 2 ⊢ (¬ 𝜑 ↔ 𝜓) | |
2 | xchnxbir.2 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
3 | 2 | bicomi 223 | . 2 ⊢ (𝜑 ↔ 𝜒) |
4 | 1, 3 | xchnxbi 331 | 1 ⊢ (¬ 𝜒 ↔ 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: 3ioran 1104 3ianor 1105 hadnot 1605 cadnot 1618 2exanali 1864 nelb 3194 nsspssun 4188 undif3 4221 2nreu 4372 intirr 6012 ordtri3or 6283 nf1const 7156 nf1oconst 7157 frxp 7938 ressuppssdif 7972 suppofssd 7990 domunfican 9017 ssfin4 9997 prinfzo0 13354 swrdnnn0nd 14297 swrdnd0 14298 lcmfunsnlem2lem1 16271 ncoprmlnprm 16360 prm23ge5 16444 smndex2dnrinv 18469 symgfix2 18939 gsumdixp 19763 cnfldfunALT 20523 symgmatr01lem 21710 ppttop 22065 zclmncvs 24217 mdegleb 25134 2lgslem3 26457 trlsegvdeg 28492 strlem1 30513 difrab2 30746 isarchi 31338 bnj1189 32889 dfacycgr1 33006 fmlasucdisj 33261 xpord3pred 33725 naddcllem 33758 dfon3 34121 wl-3xornot 35579 poimirlem18 35722 poimirlem21 35725 poimirlem30 35734 poimirlem31 35735 ftc1anclem3 35779 hdmaplem4 39715 mapdh9a 39730 ifpnot23 40983 ifpdfxor 40992 ifpnim1 41002 ifpnim2 41004 dfsucon 41028 ntrneineine1lem 41583 disjrnmpt2 42615 aiotavb 44469 dfatprc 44509 ndmafv2nrn 44601 nfunsnafv2 44604 oddneven 44984 |
Copyright terms: Public domain | W3C validator |