| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xchnxbir | Structured version Visualization version GIF version | ||
| Description: Replacement of a subexpression by an equivalent one. (Contributed by Wolf Lammen, 27-Sep-2014.) |
| Ref | Expression |
|---|---|
| xchnxbir.1 | ⊢ (¬ 𝜑 ↔ 𝜓) |
| xchnxbir.2 | ⊢ (𝜒 ↔ 𝜑) |
| Ref | Expression |
|---|---|
| xchnxbir | ⊢ (¬ 𝜒 ↔ 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xchnxbir.1 | . 2 ⊢ (¬ 𝜑 ↔ 𝜓) | |
| 2 | xchnxbir.2 | . . 3 ⊢ (𝜒 ↔ 𝜑) | |
| 3 | 2 | bicomi 224 | . 2 ⊢ (𝜑 ↔ 𝜒) |
| 4 | 1, 3 | xchnxbi 332 | 1 ⊢ (¬ 𝜒 ↔ 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: 3ioran 1105 3ianor 1106 hadnot 1602 cadnot 1615 2exanali 1860 nabbib 3028 nelb 3213 nsspssun 4231 undif3 4263 2nreu 4407 intirr 6091 ordtri3or 6364 nf1const 7279 nf1oconst 7280 frxp 8105 ressuppssdif 8164 suppofssd 8182 naddcllem 8640 domunfican 9272 ssfin4 10263 prinfzo0 13659 swrdnnn0nd 14621 swrdnd0 14622 lcmfunsnlem2lem1 16608 ncoprmlnprm 16698 prm23ge5 16786 smndex2dnrinv 18842 symgfix2 19346 gsumdixp 20228 cnfldfun 21278 cnfldfunOLD 21291 symgmatr01lem 22540 ppttop 22894 zclmncvs 25048 mdegleb 25969 2lgslem3 27315 trlsegvdeg 30156 strlem1 32179 difrab2 32427 isarchi 33136 bnj1189 34999 dfacycgr1 35131 fmlasucdisj 35386 dfon3 35880 wl-3xornot 37469 poimirlem18 37632 poimirlem21 37635 poimirlem30 37644 poimirlem31 37645 ftc1anclem3 37689 hdmaplem4 41768 mapdh9a 41783 onsupmaxb 43228 dflim5 43318 faosnf0.11b 43416 ifpnot23 43467 ifpdfxor 43476 ifpnim1 43486 ifpnim2 43488 dfsucon 43512 ntrneineine1lem 44073 disjrnmpt2 45182 aiotavb 47091 dfatprc 47131 ndmafv2nrn 47223 nfunsnafv2 47226 oddneven 47645 usgrexmpl2trifr 48028 |
| Copyright terms: Public domain | W3C validator |