Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpim4 | Structured version Visualization version GIF version |
Description: Restate implication as conditional logic operator. (Contributed by RP, 25-Apr-2020.) |
Ref | Expression |
---|---|
ifpim4 | ⊢ ((𝜑 → 𝜓) ↔ if-(𝜓, 𝜓, ¬ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . 2 ⊢ ((𝜑 ∧ 𝜓) → 𝜓) | |
2 | olc 864 | . 2 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
3 | ifpim23g 41000 | . 2 ⊢ (((𝜑 → 𝜓) ↔ if-(𝜓, 𝜓, ¬ 𝜑)) ↔ (((𝜑 ∧ 𝜓) → 𝜓) ∧ (𝜓 → (𝜑 ∨ 𝜓)))) | |
4 | 1, 2, 3 | mpbir2an 707 | 1 ⊢ ((𝜑 → 𝜓) ↔ if-(𝜓, 𝜓, ¬ 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 ∨ wo 843 if-wif 1059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ifp 1060 |
This theorem is referenced by: ifpnim2 41004 |
Copyright terms: Public domain | W3C validator |