Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifpim4 Structured version   Visualization version   GIF version

Theorem ifpim4 41003
Description: Restate implication as conditional logic operator. (Contributed by RP, 25-Apr-2020.)
Assertion
Ref Expression
ifpim4 ((𝜑𝜓) ↔ if-(𝜓, 𝜓, ¬ 𝜑))

Proof of Theorem ifpim4
StepHypRef Expression
1 simpr 484 . 2 ((𝜑𝜓) → 𝜓)
2 olc 864 . 2 (𝜓 → (𝜑𝜓))
3 ifpim23g 41000 . 2 (((𝜑𝜓) ↔ if-(𝜓, 𝜓, ¬ 𝜑)) ↔ (((𝜑𝜓) → 𝜓) ∧ (𝜓 → (𝜑𝜓))))
41, 2, 3mpbir2an 707 1 ((𝜑𝜓) ↔ if-(𝜓, 𝜓, ¬ 𝜑))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843  if-wif 1059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-ifp 1060
This theorem is referenced by:  ifpnim2  41004
  Copyright terms: Public domain W3C validator