Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpnotnotb | Structured version Visualization version GIF version |
Description: Factor conditional logic operator over negation in terms 2 and 3. (Contributed by RP, 21-Apr-2020.) |
Ref | Expression |
---|---|
ifpnotnotb | ⊢ (if-(𝜑, ¬ 𝜓, ¬ 𝜒) ↔ ¬ if-(𝜑, 𝜓, 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ifpnot23 41064 | . 2 ⊢ (¬ if-(𝜑, 𝜓, 𝜒) ↔ if-(𝜑, ¬ 𝜓, ¬ 𝜒)) | |
2 | 1 | bicomi 223 | 1 ⊢ (if-(𝜑, ¬ 𝜓, ¬ 𝜒) ↔ ¬ if-(𝜑, 𝜓, 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 205 if-wif 1060 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ifp 1061 |
This theorem is referenced by: ifpananb 41092 ifpnannanb 41093 ifpxorxorb 41097 |
Copyright terms: Public domain | W3C validator |