Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ifpnotnotb Structured version   Visualization version   GIF version

Theorem ifpnotnotb 41065
Description: Factor conditional logic operator over negation in terms 2 and 3. (Contributed by RP, 21-Apr-2020.)
Assertion
Ref Expression
ifpnotnotb (if-(𝜑, ¬ 𝜓, ¬ 𝜒) ↔ ¬ if-(𝜑, 𝜓, 𝜒))

Proof of Theorem ifpnotnotb
StepHypRef Expression
1 ifpnot23 41064 . 2 (¬ if-(𝜑, 𝜓, 𝜒) ↔ if-(𝜑, ¬ 𝜓, ¬ 𝜒))
21bicomi 223 1 (if-(𝜑, ¬ 𝜓, ¬ 𝜒) ↔ ¬ if-(𝜑, 𝜓, 𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 205  if-wif 1060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061
This theorem is referenced by:  ifpananb  41092  ifpnannanb  41093  ifpxorxorb  41097
  Copyright terms: Public domain W3C validator