| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpnotnotb | Structured version Visualization version GIF version | ||
| Description: Factor conditional logic operator over negation in terms 2 and 3. (Contributed by RP, 21-Apr-2020.) |
| Ref | Expression |
|---|---|
| ifpnotnotb | ⊢ (if-(𝜑, ¬ 𝜓, ¬ 𝜒) ↔ ¬ if-(𝜑, 𝜓, 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ifpnot23 43491 | . 2 ⊢ (¬ if-(𝜑, 𝜓, 𝜒) ↔ if-(𝜑, ¬ 𝜓, ¬ 𝜒)) | |
| 2 | 1 | bicomi 224 | 1 ⊢ (if-(𝜑, ¬ 𝜓, ¬ 𝜒) ↔ ¬ if-(𝜑, 𝜓, 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 if-wif 1063 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-ifp 1064 |
| This theorem is referenced by: ifpananb 43519 ifpnannanb 43520 ifpxorxorb 43524 |
| Copyright terms: Public domain | W3C validator |