Proof of Theorem ifpxorxorb
Step | Hyp | Ref
| Expression |
1 | | df-xor 1503 |
. . 3
⊢ ((𝜓 ⊻ 𝜒) ↔ ¬ (𝜓 ↔ 𝜒)) |
2 | | df-xor 1503 |
. . 3
⊢ ((𝜃 ⊻ 𝜏) ↔ ¬ (𝜃 ↔ 𝜏)) |
3 | | ifpbi23 40554 |
. . 3
⊢ ((((𝜓 ⊻ 𝜒) ↔ ¬ (𝜓 ↔ 𝜒)) ∧ ((𝜃 ⊻ 𝜏) ↔ ¬ (𝜃 ↔ 𝜏))) → (if-(𝜑, (𝜓 ⊻ 𝜒), (𝜃 ⊻ 𝜏)) ↔ if-(𝜑, ¬ (𝜓 ↔ 𝜒), ¬ (𝜃 ↔ 𝜏)))) |
4 | 1, 2, 3 | mp2an 691 |
. 2
⊢
(if-(𝜑, (𝜓 ⊻ 𝜒), (𝜃 ⊻ 𝜏)) ↔ if-(𝜑, ¬ (𝜓 ↔ 𝜒), ¬ (𝜃 ↔ 𝜏))) |
5 | | ifpbibib 40591 |
. . . 4
⊢
(if-(𝜑, (𝜓 ↔ 𝜒), (𝜃 ↔ 𝜏)) ↔ (if-(𝜑, 𝜓, 𝜃) ↔ if-(𝜑, 𝜒, 𝜏))) |
6 | 5 | notbii 323 |
. . 3
⊢ (¬
if-(𝜑, (𝜓 ↔ 𝜒), (𝜃 ↔ 𝜏)) ↔ ¬ (if-(𝜑, 𝜓, 𝜃) ↔ if-(𝜑, 𝜒, 𝜏))) |
7 | | ifpnotnotb 40560 |
. . 3
⊢
(if-(𝜑, ¬ (𝜓 ↔ 𝜒), ¬ (𝜃 ↔ 𝜏)) ↔ ¬ if-(𝜑, (𝜓 ↔ 𝜒), (𝜃 ↔ 𝜏))) |
8 | | df-xor 1503 |
. . 3
⊢
((if-(𝜑, 𝜓, 𝜃) ⊻ if-(𝜑, 𝜒, 𝜏)) ↔ ¬ (if-(𝜑, 𝜓, 𝜃) ↔ if-(𝜑, 𝜒, 𝜏))) |
9 | 6, 7, 8 | 3bitr4i 306 |
. 2
⊢
(if-(𝜑, ¬ (𝜓 ↔ 𝜒), ¬ (𝜃 ↔ 𝜏)) ↔ (if-(𝜑, 𝜓, 𝜃) ⊻ if-(𝜑, 𝜒, 𝜏))) |
10 | 4, 9 | bitri 278 |
1
⊢
(if-(𝜑, (𝜓 ⊻ 𝜒), (𝜃 ⊻ 𝜏)) ↔ (if-(𝜑, 𝜓, 𝜃) ⊻ if-(𝜑, 𝜒, 𝜏))) |