Proof of Theorem ifpananb
| Step | Hyp | Ref
| Expression |
| 1 | | anor 985 |
. . 3
⊢ ((𝜓 ∧ 𝜒) ↔ ¬ (¬ 𝜓 ∨ ¬ 𝜒)) |
| 2 | | anor 985 |
. . 3
⊢ ((𝜃 ∧ 𝜏) ↔ ¬ (¬ 𝜃 ∨ ¬ 𝜏)) |
| 3 | | ifpbi23 43486 |
. . 3
⊢ ((((𝜓 ∧ 𝜒) ↔ ¬ (¬ 𝜓 ∨ ¬ 𝜒)) ∧ ((𝜃 ∧ 𝜏) ↔ ¬ (¬ 𝜃 ∨ ¬ 𝜏))) → (if-(𝜑, (𝜓 ∧ 𝜒), (𝜃 ∧ 𝜏)) ↔ if-(𝜑, ¬ (¬ 𝜓 ∨ ¬ 𝜒), ¬ (¬ 𝜃 ∨ ¬ 𝜏)))) |
| 4 | 1, 2, 3 | mp2an 692 |
. 2
⊢
(if-(𝜑, (𝜓 ∧ 𝜒), (𝜃 ∧ 𝜏)) ↔ if-(𝜑, ¬ (¬ 𝜓 ∨ ¬ 𝜒), ¬ (¬ 𝜃 ∨ ¬ 𝜏))) |
| 5 | | ifpororb 43518 |
. . . . 5
⊢
(if-(𝜑, (¬ 𝜓 ∨ ¬ 𝜒), (¬ 𝜃 ∨ ¬ 𝜏)) ↔ (if-(𝜑, ¬ 𝜓, ¬ 𝜃) ∨ if-(𝜑, ¬ 𝜒, ¬ 𝜏))) |
| 6 | | ifpnotnotb 43492 |
. . . . . 6
⊢
(if-(𝜑, ¬ 𝜓, ¬ 𝜃) ↔ ¬ if-(𝜑, 𝜓, 𝜃)) |
| 7 | | ifpnotnotb 43492 |
. . . . . 6
⊢
(if-(𝜑, ¬ 𝜒, ¬ 𝜏) ↔ ¬ if-(𝜑, 𝜒, 𝜏)) |
| 8 | 6, 7 | orbi12i 915 |
. . . . 5
⊢
((if-(𝜑, ¬ 𝜓, ¬ 𝜃) ∨ if-(𝜑, ¬ 𝜒, ¬ 𝜏)) ↔ (¬ if-(𝜑, 𝜓, 𝜃) ∨ ¬ if-(𝜑, 𝜒, 𝜏))) |
| 9 | 5, 8 | bitri 275 |
. . . 4
⊢
(if-(𝜑, (¬ 𝜓 ∨ ¬ 𝜒), (¬ 𝜃 ∨ ¬ 𝜏)) ↔ (¬ if-(𝜑, 𝜓, 𝜃) ∨ ¬ if-(𝜑, 𝜒, 𝜏))) |
| 10 | 9 | notbii 320 |
. . 3
⊢ (¬
if-(𝜑, (¬ 𝜓 ∨ ¬ 𝜒), (¬ 𝜃 ∨ ¬ 𝜏)) ↔ ¬ (¬ if-(𝜑, 𝜓, 𝜃) ∨ ¬ if-(𝜑, 𝜒, 𝜏))) |
| 11 | | ifpnotnotb 43492 |
. . 3
⊢
(if-(𝜑, ¬ (¬
𝜓 ∨ ¬ 𝜒), ¬ (¬ 𝜃 ∨ ¬ 𝜏)) ↔ ¬ if-(𝜑, (¬ 𝜓 ∨ ¬ 𝜒), (¬ 𝜃 ∨ ¬ 𝜏))) |
| 12 | | anor 985 |
. . 3
⊢
((if-(𝜑, 𝜓, 𝜃) ∧ if-(𝜑, 𝜒, 𝜏)) ↔ ¬ (¬ if-(𝜑, 𝜓, 𝜃) ∨ ¬ if-(𝜑, 𝜒, 𝜏))) |
| 13 | 10, 11, 12 | 3bitr4i 303 |
. 2
⊢
(if-(𝜑, ¬ (¬
𝜓 ∨ ¬ 𝜒), ¬ (¬ 𝜃 ∨ ¬ 𝜏)) ↔ (if-(𝜑, 𝜓, 𝜃) ∧ if-(𝜑, 𝜒, 𝜏))) |
| 14 | 4, 13 | bitri 275 |
1
⊢
(if-(𝜑, (𝜓 ∧ 𝜒), (𝜃 ∧ 𝜏)) ↔ (if-(𝜑, 𝜓, 𝜃) ∧ if-(𝜑, 𝜒, 𝜏))) |