| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ifpnot23 | Structured version Visualization version GIF version | ||
| Description: Negation of conditional logical operator. (Contributed by RP, 18-Apr-2020.) |
| Ref | Expression |
|---|---|
| ifpnot23 | ⊢ (¬ if-(𝜑, 𝜓, 𝜒) ↔ if-(𝜑, ¬ 𝜓, ¬ 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ianor 983 | . . . 4 ⊢ (¬ (𝜑 ∧ 𝜓) ↔ (¬ 𝜑 ∨ ¬ 𝜓)) | |
| 2 | pm4.55 989 | . . . 4 ⊢ (¬ (¬ 𝜑 ∧ 𝜒) ↔ (𝜑 ∨ ¬ 𝜒)) | |
| 3 | 1, 2 | anbi12i 628 | . . 3 ⊢ ((¬ (𝜑 ∧ 𝜓) ∧ ¬ (¬ 𝜑 ∧ 𝜒)) ↔ ((¬ 𝜑 ∨ ¬ 𝜓) ∧ (𝜑 ∨ ¬ 𝜒))) |
| 4 | ioran 985 | . . 3 ⊢ (¬ ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒)) ↔ (¬ (𝜑 ∧ 𝜓) ∧ ¬ (¬ 𝜑 ∧ 𝜒))) | |
| 5 | dfifp4 1066 | . . 3 ⊢ (if-(𝜑, ¬ 𝜓, ¬ 𝜒) ↔ ((¬ 𝜑 ∨ ¬ 𝜓) ∧ (𝜑 ∨ ¬ 𝜒))) | |
| 6 | 3, 4, 5 | 3bitr4i 303 | . 2 ⊢ (¬ ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒)) ↔ if-(𝜑, ¬ 𝜓, ¬ 𝜒)) |
| 7 | df-ifp 1063 | . 2 ⊢ (if-(𝜑, 𝜓, 𝜒) ↔ ((𝜑 ∧ 𝜓) ∨ (¬ 𝜑 ∧ 𝜒))) | |
| 8 | 6, 7 | xchnxbir 333 | 1 ⊢ (¬ if-(𝜑, 𝜓, 𝜒) ↔ if-(𝜑, ¬ 𝜓, ¬ 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 206 ∧ wa 395 ∨ wo 847 if-wif 1062 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 |
| This theorem is referenced by: ifpnotnotb 43470 ifpnorcor 43471 ifpnancor 43472 ifpnot23b 43473 ifpnot23c 43475 ifpnot23d 43476 ifpdfnan 43477 ifpdfxor 43478 ifpor123g 43499 |
| Copyright terms: Public domain | W3C validator |