Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ifporcor | Structured version Visualization version GIF version |
Description: Corollary of commutation of or. (Contributed by RP, 20-Apr-2020.) |
Ref | Expression |
---|---|
ifporcor | ⊢ (if-(𝜑, 𝜑, 𝜓) ↔ if-(𝜓, 𝜓, 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orcom 868 | . 2 ⊢ ((𝜑 ∨ 𝜓) ↔ (𝜓 ∨ 𝜑)) | |
2 | ifpdfor2 40535 | . 2 ⊢ ((𝜑 ∨ 𝜓) ↔ if-(𝜑, 𝜑, 𝜓)) | |
3 | ifpdfor2 40535 | . 2 ⊢ ((𝜓 ∨ 𝜑) ↔ if-(𝜓, 𝜓, 𝜑)) | |
4 | 1, 2, 3 | 3bitr3i 305 | 1 ⊢ (if-(𝜑, 𝜑, 𝜓) ↔ if-(𝜓, 𝜓, 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∨ wo 845 if-wif 1059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-ifp 1060 |
This theorem is referenced by: ifpnorcor 40554 |
Copyright terms: Public domain | W3C validator |